Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 33 - Electromagnetic Induction - Exercises and Problems - Page 1001: 74

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ Let's assume that the circuit has negligible (zero) resistance, so the energy is conserved. The 1200$\mu$F- capacitor (the right capacitor) will have a maximum voltage when the whole energy stored on the 300$\mu$F- capacitor is fully transferred to it. Recalling that the energy stored in a capacitor is given by $\frac{1}{2}C(\Delta V_C)^2$. Thus, $$\frac{1}{2}C_{\rm left}(\Delta V_C)_{\rm left}^2=\frac{1}{2}C_{\rm right}(\Delta V_C)_{\rm right}^2$$ $$(\Delta V_C)_{\rm right}=\sqrt{\dfrac{C_{\rm left}(\Delta V_C)_{\rm left}^2}{C_{\rm right}}}$$ Plug the known; $$(\Delta V_C)_{\rm right}=\sqrt{\dfrac{(300)(100)^2}{(1200)}}$$ $$(\Delta V_C)_{\rm right}=\color{red}{\bf 50}\;\rm V$$ $$\color{blue}{\bf [b]}$$ $\bullet$ First we need to close $\rm S_1$ at $t=0$ s. - Now we have a $LC$ circuit, let's call it the left circuit. The charge oscillates in this circuit between the capacitor and the inductor at a periodic time of $T_{\rm left}$. - After a time of $t_1=\frac{1}{4}T_{\rm left}$, the capacitor will be fully uncharged and the whole current is maximum through the inductor. $\bullet$ At this instant, we need to open $\rm S_1$ and close $\rm S_2$. - Now we have a $LC$ circuit, let's call it the right circuit. The charge oscillates in this circuit between the capacitor and the inductor at a periodic time of $T_{\rm right}$. - After a time of $t_2=\frac{1}{4}T_{\rm left}+\frac{1}{4}T_{\rm right}$, the capacitor will be fully charged. $\bullet$ At this instant, we need to open $\rm S_2$. Now we need to find $t_1$ and $t_2$ where $T=2\pi/\Omega=2\pi \sqrt{LC}$. $$t_1=\frac{1}{4}T_{\rm left}=\frac{1}{4}(2\pi \sqrt{LC_{\rm left}})$$ $$t_1= \frac{1}{2}\pi \sqrt{(5.3)(300\times 10^{-6})}=\color{red}{\bf 0.0626}\;\rm s$$ $$t_2=\frac{1}{4}T_{\rm left}+\frac{1}{4}T_{\rm right}=\frac{1}{4}(2\pi \sqrt{LC_{\rm left}})+\frac{1}{4}(2\pi \sqrt{LC_{\rm right}})$$ $$t_2= \frac{1}{2} \pi \sqrt{LC_{\rm left}} +\frac{1}{2}\pi \sqrt{LC_{\rm right}}$$ $$t_2=\frac{1}{2}\pi \sqrt{(5.3)(300\times 10^{-6})}+\frac{1}{2}\pi \sqrt{(5.3)(1200\times 10^{-6})}$$ $$t_2 =\color{red}{\bf 0.1879}\;\rm s$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.