Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 33 - Electromagnetic Induction - Exercises and Problems - Page 1001: 67

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the potential difference through an inductor is given by $$\Delta V_L=-L\dfrac{dI}{dt}$$ where $I=I_0e^{-t/\tau}$, so $$\Delta V_L=-I_0L\dfrac{d }{dt}e^{-t/\tau}$$ $$\boxed{\Delta V_L=\dfrac{I_0L}{\tau}e^{-t/\tau}}$$ $$\color{blue}{\bf [b]}$$ Plug the known into the boxed formula above, $$ \Delta V_L=\dfrac{(50\times 10^{-3})(20\times 10^{-3})}{(1\times 10^{-3})}e^{-t/(1\times 10^{-3})}$$ $$ \Delta V_L= e^{-t/(1\times 10^{-3})}$$ $\bullet\Rightarrow$ At $t=0$ s, $$ \Delta V_L= e^{-0/(1\times 10^{-3})}=\color{red}{\bf 1}\;\rm V$$ $\bullet\Rightarrow$ At $t=1$ ms, $$ \Delta V_L= e^{-(1\times 10^{-3})/(1\times 10^{-3})}=\color{red}{\bf 0.368}\;\rm V$$ $\bullet\Rightarrow$ At $t=2$ ms, $$ \Delta V_L= e^{-(2\times 10^{-3})/(1\times 10^{-3})}=\color{red}{\bf 0.135}\;\rm V$$ $\bullet\Rightarrow$ At $t=3$ ms, $$ \Delta V_L= e^{-(3\times 10^{-3})/(1\times 10^{-3})}=\color{red}{\bf 0.05}\;\rm V$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.