Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 28 - The Electric Potential - Exercises and Problems - Page 837: 70

Answer

See the detailed answer below.

Work Step by Step

We know that the potential at any point is the superposition of the potentials due to all charges. So the potential at point $\rm p$ due to the $dq_{\rm ring}$, in the given figure, is given by $$dV_{\rm ring}=\dfrac{1}{(4\pi \epsilon_0)}\dfrac{dq_{\rm ring}}{\sqrt{r^2+z^2}} \tag 1$$ Let's assume that the area charge density of this rod is $\sigma$ which is given by $$\sigma=\dfrac{Q}{A}=\dfrac{Q}{\pi (R_{\rm out}^2-R_{\rm in}^2)}=\dfrac{dq_{\rm ring}}{2\pi rdr}$$ where $dq$ is the charge of the very thin black ring in the figure below and $dr$ is its width. Thus, $$dq_{\rm ring}=\dfrac{2\pi rQdr}{\pi (R_{\rm out}^2-R_{\rm in}^2)}$$ $$dq_{\rm ring}=\dfrac{2Qrdr}{(R_{\rm out}^2-R_{\rm in}^2)}\tag 2 $$ Plug $dq$ from (2) into (1), $$dV_{\rm ring}=\dfrac{1}{(4\pi \epsilon_0)}\dfrac{ 1}{\sqrt{r^2+z^2}} \dfrac{2Qrdr}{(R_{\rm out}^2-R_{\rm in}^2)}$$ $$dV_{\rm ring}=\dfrac{2Q}{ (R_{\rm out}^2-R_{\rm in}^2) (4\pi \epsilon_0) }\dfrac{ rdr}{\sqrt{r^2+z^2}} $$ So the net electric potential at point $\rm p$ is given by $$ V_{\rm disk}=\int dV_{\rm ring}=\dfrac{2Q}{ (R_{\rm out}^2-R_{\rm in}^2) (4\pi \epsilon_0) }\int_{R_{\rm in}}^{R_{\rm out}}\dfrac{ rdr}{\sqrt{r^2+z^2}} $$ $$ V_{\rm disk} =\dfrac{2Q}{ (R_{\rm out}^2-R_{\rm in}^2) (4\pi \epsilon_0) }\sqrt{r^2+z^2}\bigg|_{R_{\rm in}}^{R_{\rm out}} $$ $$\boxed{ V_{\rm disk} =\dfrac{2Q}{ (4\pi \epsilon_0)(R_{\rm out}^2-R_{\rm in}^2) }\left( \sqrt{R_{\rm out}^2+z^2}-\sqrt{R_{\rm in}^2+z^2}\right) }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.