Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 28 - The Electric Potential - Exercises and Problems - Page 837: 66

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the potential at any point is the superposition of the potentials due to all charges. So the potential at point $\rm p$ due to the dipole is given by $$V_{\rm p}=V_1+V_2+V_3$$ $$V_{\rm p}=\dfrac{k_e(+q)}{r_1}+\dfrac{k_e(-2q)}{r_2}+\dfrac{k_e(+q)}{r_3}$$ From the figure below, $$V_{\rm p}=\dfrac{k_eq}{y+s}-\dfrac{2k_eq}{y}+\dfrac{k_eq}{y-s}$$ $$V_{\rm p}=k_eq\left[\dfrac{1}{y+s}-\dfrac{ 2}{y }+\dfrac{1}{y-s}\right]$$ $$V_{\rm p}=k_eq\left[\dfrac{y(y-s)-2(y^2-s^2)+y(y+s)}{y(y^2-s^2)} \right]$$ $$V_{\rm p}=k_eq\left[\dfrac{y^2-ys-2y^2+2s^2+y^2+ys}{y(y^2-s^2)} \right]$$ $$V_{\rm p}=k_eq\left[\dfrac{ 2s^2 }{y(y^2-s^2)} \right]$$ and when $y\gt \gt s$, $[y^2-s^2\approx y^2]$, so $$\boxed{V_{\rm p}= \dfrac{ 2k_eqs^2 }{y^3} }$$ $$\boxed{V_{\rm p}= \dfrac{1}{4\pi \epsilon_0}\dfrac{ 2 qs^2 }{y^3} }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.