Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 28 - The Electric Potential - Exercises and Problems - Page 837: 64

Answer

a) $ \dfrac{1}{4\pi \epsilon_0} \dfrac{ p}{ { y^2 } } $ b) $0.056\;\rm V$

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the potential at any point is the superposition of the potentials due to all charges. So the potential at point $\rm p$ due to the dipole is given by $$V_{\rm p}=V_++V_-$$ $$V_{\rm p}=\dfrac{k_e(+q)}{r_+}+\dfrac{k_e(-q)}{r_-}$$ From the figure below, $$V_{\rm p}=\dfrac{k_eq}{y-\dfrac{s}{2}}-\dfrac{k_eq}{y+\dfrac{s}{2}}$$ $$V_{\rm p}=k_eq\left[\dfrac{1}{y-\dfrac{s}{2}}-\dfrac{ 1}{y+\dfrac{s}{2}}\right]$$ $$V_{\rm p}=k_eq\left[\dfrac{1}{ \dfrac{2y-s}{2}}-\dfrac{ 1}{\dfrac{2y+s}{2}}\right]$$ $$V_{\rm p}=2k_eq\left[\dfrac{1}{ {2y-s} }-\dfrac{ 1}{ {2y+s} }\right]$$ $$V_{\rm p}=2k_eq\left[\dfrac{2y+s-[2y-s]}{ {(2y-s)(2y+s)} } \right]$$ $$V_{\rm p}=2k_eq\left[\dfrac{2s}{ {(2y-s)(2y+s)} } \right]$$ $$V_{\rm p}=4k_eqs\left[\dfrac{1}{ { 4y^2-s^2 } } \right]$$ $$V_{\rm p}= \dfrac{4k_ep}{ { 4y^2-s^2 } } $$ $$V_{\rm p}= \dfrac{ k_ep}{ { y^2-\dfrac{s^2}{4} } } $$ and since $y\gt\gt s$, so $y^2-\dfrac{s^2}{4} \approx y^2$ $$\boxed{V_{\rm p}= \dfrac{ k_ep}{ { y^2 } }=\dfrac{1}{4\pi \epsilon_0} \dfrac{ p}{ { y^2 } } }$$ $$\color{blue}{\bf [b]}$$ Plug the known into the boxed formula above, $$ V_{\rm p}= \dfrac{1}{4\pi \epsilon_0} \dfrac{ p}{ { y^2 } }=\dfrac{ (9\times 10^9)(6.2\times 10^{-30})}{ { (1.0\times10^{-9})^2 } }$$ $$ V_{\rm p}=\color{red}{\bf 0.056}\;\rm V$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.