Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 28 - The Electric Potential - Exercises and Problems - Page 837: 77

Answer

See the detailed answer below.

Work Step by Step

First, we need to sketch this dipole and the point at which we need to measure the electric potential, as shown below. We know that the potential at any point is the superposition of the potentials due to all charges. So the potential at point $\rm p$ due to the two-point charges of the dipole is given by $$V_{\rm p}=\dfrac{1}{(4\pi \epsilon_0)}\dfrac{ q}{r_1}+\dfrac{1}{(4\pi \epsilon_0)}\dfrac{ -q}{r_2} $$ $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0)}\left[\dfrac{ 1}{r_1}- \dfrac{ 1}{r_2} \right]\tag 1$$ From the geometry of the figure below, we can see that $$r_1=\sqrt{x^2+(y-s/2)^2}$$ and that $$r_2=\sqrt{x^2+(y+s/2)^2}$$ Plug these into (1); $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0)}\left[\dfrac{ 1}{\sqrt{x^2+(y-s/2)^2}}- \dfrac{ 1}{\sqrt{x^2+(y+s/2)^2}} \right]$$ $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0)}\left[\dfrac{ 1}{\sqrt{x^2+y^2-ys+(s/2)^2}}- \dfrac{ 1}{\sqrt{x^2+y^2+ys+(s/2)^2}} \right]$$ From the geometry of the figure below, $r^2=x^2+y^2$ $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0)}\left[\dfrac{ 1}{\sqrt{r^2-ys+(s/2)^2}}- \dfrac{ 1}{\sqrt{r^2+ys+(s/2)^2}} \right]$$ We are given that $r\gt\gt s$, so $(s/2)^2$ is negligible compared to $r^2$ or $ys$ $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0)}\left[\dfrac{ 1}{\sqrt{r^2-ys }}- \dfrac{ 1}{\sqrt{r^2+ys }} \right]$$ $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0)}\left[ \left(r^2-ys\right)^{-\frac{1}{2}} - \left(r^2+ys\right)^{-\frac{1}{2}}\right]$$ $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0) r}\left[ \left(1-\dfrac{ys}{r^2}\right)^{-\frac{1}{2}} - \left(1+\dfrac{ys}{r^2}\right)^{-\frac{1}{2}}\right]\tag 2$$ We can use the binomial expansion $(1+x)^n$ to approximate this, where $x=\dfrac{-ys}{r^2}$ and for the second term $x=\dfrac{ys}{r^2}$. $$ \left(1+\dfrac{-ys}{r^2}\right)^{-\frac{1}{2}}\approx 1+\left[-\frac{1}{2}\dfrac{-ys}{r^2}\right]+\dfrac{\frac{-1}{2}(\frac{-3}{2})}{2!}\left(\dfrac{-ys}{r^2}\right)^2+\cdot\cdot\cdot$$ $$ \left(1+\dfrac{ys}{r^2}\right)^{-\frac{1}{2}}\approx 1+\left[-\frac{1}{2}\dfrac{ ys}{r^2}\right]+\dfrac{\frac{-1}{2}(\frac{-3}{2})}{2!}\left(\dfrac{ ys}{r^2}\right)^2+\cdot\cdot\cdot$$ So when we subtract the last formula from the first one, we got $$ \left(1-\dfrac{ys}{r^2}\right)^{-\frac{1}{2}}- \left(1+\dfrac{ys}{r^2}\right)^{-\frac{1}{2}}=\dfrac{ys}{r^2}+\dfrac{-2(\frac{-1}{2})(\frac{-3}{2})(\frac{-5}{2})}{3!}\left(\dfrac{ ys}{r^2}\right)^3+\cdot\cdot\cdot$$ where the second term is also negligible. Therefore, $$ \left(1-\dfrac{ys}{r^2}\right)^{-\frac{1}{2}}- \left(1+\dfrac{ys}{r^2}\right)^{-\frac{1}{2}}=\dfrac{ys}{r^2}$$ Plug into (2), $$V_{\rm p}=\dfrac{q}{(4\pi \epsilon_0) r}\left[\dfrac{ys}{r^2}\right] $$ $$V_{\rm p}=\dfrac{qs}{(4\pi \epsilon_0) r^3} y$$ We can see that $\cos\theta=\dfrac{y}{r}$, so $y=r\cos\theta$ $$V_{\rm p}=\dfrac{p}{(4\pi \epsilon_0) r^3}r\cos\theta$$ $$\boxed{V_{\rm p}=\dfrac{1}{(4\pi \epsilon_0)}\dfrac{p\cos\theta}{ r^2} }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.