Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 17 - Work, Heat, and the First Law of Thermodynamics - Exercises and Problems - Page 500: 62

Answer

See the detailed answer below.

Work Step by Step

a) We are given, for both gases, that: - $n=0.10$ mol. - $T_1=300$ K. - $P_1=3$ atm. - $P_2=1$ atm. - $\gamma=1.4$ since it is a diatomic gas. _______________________________________________________________________________ $\rightarrow$ Gas A undergoes an isothermal process, so $T_1=T_{2A}$, Therefore, $$T_{2A}=\color{red}{\bf 300}\;\rm K$$ _______________________________________________________________________________ $\rightarrow$ Gas B undergoes an adiabtic process, so $$P_1V_1^\gamma=P_{2}V^\gamma_{2B} $$ Hence, $$\dfrac{P_1}{P_2}=\dfrac{V^\gamma_{2B} }{V_1^\gamma}=\left[\dfrac{V_{2B}}{V_1}\right]^\gamma$$ $$\left[\dfrac{P_1}{P_2}\right]^\frac{1}{\gamma}=\dfrac{V_{2B}}{V_1} $$ Therefore, $$V_{2B}=V_1\left[\dfrac{P_1}{P_2}\right]^\frac{1}{\gamma} \tag 1$$ Now we need to find the initial volume of the two gases; $$P_1V_1=nRT_1$$ $$V_1=\dfrac{nRT_1}{P_1}$$ Plugging the known; $$V_1=\dfrac{(0.1)(8.31)(300)}{(3\times 1.013\times 10^5)}$$ $$V_1=\bf8.20\times 10^{-4} \;\rm m^3=\bf 820\;\rm cm^3$$ Plugging the known into (1); $$V_{2B}=820\left[\dfrac{3}{1}\right]^\frac{1}{1.4} $$ $$V_{2B}= \bf 1797\;\rm cm^3$$ Now the final temperature of this process is given by $$\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_{2B}}{T_{2B}}$$ Hence, $$T_{2B}=\dfrac{ P_2V_{2B}T_1}{ P_1V_1} $$ Plugging the known; $$T_{2B}=\dfrac{ (1)(1797)(300)}{ (3)(820)} $$ $$T_{2B}=\color{red}{\bf 219}\;\rm K$$ --- b) First, we need to find $V_{2A}$ which is given by $$V_{2A}=\dfrac{P_1V_1}{P_2}=\dfrac{(3)(820)}{(1)}=\bf 2460\;\rm cm^3$$ $\bullet$ Both gases start from the same point: $(V_1,P_1)=\rm (820\;cm^3,\;3\;atm)$ $\Rightarrow$ Gas A ends at the point of $(V_{2A},P_{2A})=\rm (2460\;cm^3,\;1\;atm)$ $\Rightarrow$ Gas B ends at the point of $(V_{2B},P_{2B})=\rm (1797\;cm^3,\;1\;atm)$ See the graph below. _____________________________________________________________________
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.