Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 17 - Work, Heat, and the First Law of Thermodynamics - Exercises and Problems - Page 499: 56

Answer

See the detailed answer below.

Work Step by Step

a) The volume has tripled, so the final volume is $$V_2=3V_1\tag 1$$ And since the gas undergoes an isobaric process, $P_1=P_2$; $$\dfrac{\color{red}{\bf\not} P_1V_1}{T_1}=\dfrac{\color{red}{\bf\not} P_2V_2}{T_2}$$ Hence, $$T_2=\dfrac{V_2T_1}{V_1}=\dfrac{(3\color{red}{\bf\not} V_1)T_1}{\color{red}{\bf\not} V_1}$$ Thus, $$T_2=3T_1=3(20+273)$$ $$T_2=\bf 879\;\rm K=\color{red}{606^\circ}C$$ Now we need to find the initial pressure which is given by $$P_1V_1=nRT_1$$ Hence, $$V_1=\dfrac{nRT_1}{P_1}\tag 2$$ where $$n=\dfrac{m}{M_{N_2}}=\dfrac{m}{2M_N}$$ Plugging the known $$n=\dfrac{5}{2(14)}=\bf \frac{5}{28}\;\rm mol$$ Hence, $$V_1=\dfrac{nRT_1}{P_1}=\dfrac{(\frac{5}{28})(8.31)(20+273)}{(3\times 1.013\times 10^5)}$$ $$V_1=\bf 1.4307\times 10^{-3}\;\rm m^3\approx \bf 1431\;cm^3$$ Therefore, $$V_2=3\times1.4307\times 10^{-3} $$ $$V_2=\color{red}{\bf 4.292\times 10^{-3}}\;\rm m^3\approx \bf 4293\;cm^3$$ ___________________________________________________________________ b) Since it is an isobaric process, then the heat transferred is given by $$Q=nC_{\rm p}\Delta T$$ Plugging the known; $$Q=\frac{5}{28} (29.1) (606-20)$$ $$Q=\color{red}{\bf3.045\times 10^3}\;\rm J$$ ___________________________________________________________________ c) Now the gas undergoes an isochoric process, so $$\dfrac{P_2\color{red}{\bf\not} V_2}{T_2}=\dfrac{P_3\color{red}{\bf\not} V_3}{T_3}$$ where $T_3=T_1$ and $P_2=P_1$ $$\dfrac{P_1 }{T_2}=\dfrac{P_3 }{T_1}$$ Thus, $$P_3=\dfrac{P_1T_1}{T_2}$$ Plugging the known; $$P_3=\dfrac{(3)(20+273)}{(606+273)}$$ $$P_3=\color{red}{\bf1.0}\;\rm atm$$ ___________________________________________________________________ d) Since it is an isochoric process, then the heat transferred out from the gas is given by $$Q=nC_{\rm v}\Delta T$$ Plugging the known; $$Q=\frac{5}{28} (20.8) (20-606)$$ $$Q=\color{red}{\bf-2.176\times 10^3}\;\rm J$$ ___________________________________________________________________ e) We have two processes: $\bullet$1- An isobaric expansion process. It starts at $(V_1,P_1)=(1431\;\rm cm^3,3\;atm)$ and ends at $(V_2,P_3)=(4293\;\rm cm^3,3\;atm)$ $\bullet$ 2- An isochoric compression process. It starts at $(V_2,P_3)=(4293\;\rm cm^3,3\;atm)$ and ends at $(V_3,P_3)=(4293\;\rm cm^3,1\;atm)$ See the graph below. ----
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.