Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 17 - Work, Heat, and the First Law of Thermodynamics - Exercises and Problems - Page 499: 53

Answer

See the detailed answer below.

Work Step by Step

a) When the gas undergoes an isochoric process, then $$Q=nC_{\rm v}\Delta T$$ $$Q=nC_{\rm v}(T_f-T_i)$$ Thus, $$T_f=\dfrac{Q}{nC_{\rm v}}+T_i\tag 1$$ Now we need to find the number of moles of this 3 g-Helium $$n=\dfrac{m}{M_{He}}=\dfrac{3}{4}=\bf 0.75\;\rm mol$$ Plugging into (1) and plugging the other known; $$T_f=\dfrac{1000}{(0.75)(12.5) }+(20+273)\approx\bf 400\;\rm K$$ The final pressure is given by $$\dfrac{P_i\color{red}{\bf\not} V_i}{T_i}=\dfrac{P_f\color{red}{\bf\not} V_f}{T_f}$$ $$P_f=\dfrac{P_iT_f}{T_i}\tag 2$$ Now we need to find $P_i$ which is given by $$P_iV_i=nRT_i$$ Hence, $$P_i=\dfrac{nRT_i}{V_i}$$ Plugging into (2); $$P_f=\dfrac{nR\color{red}{\bf\not} T_i T_f}{V_i\color{red}{\bf\not} T_i} $$ $$P_f=\dfrac{nR T_f}{V_i } =\dfrac{nR T_f}{L^3 } $$ Plugging the known; $$P_f=\dfrac{(0.75)(8.31)(400)}{(0.20^3 )} $$ $$P_f=3.12\times 10^5\;\rm Pa\approx \color{red}{\bf3.1}\;\rm atm$$ ____________________________________________________________ b) When the gas undergoes an isobaric process, then $$Q=nC_{\rm p}\Delta T$$ $$Q=nC_{\rm p}(T_f-T_i)$$ Thus, $$T_f=\dfrac{Q}{nC_{\rm p}}+T_i $$ Plugging the known; $$T_f=\dfrac{1000}{(0.75)(20.8)}+(20+273)=\bf 357\;\rm K$$ The final volume is given by $$\dfrac{\color{red}{\bf\not}P_iV_i}{T_i}=\dfrac{\color{red}{\bf\not} P_fV_f}{T_f}$$ $$V_f=\dfrac{V_iT_f}{T_i} =\dfrac{L^3T_f}{T_i} $$ Plugging the known; $$V_f =\dfrac{(20)^3(357)}{(20+273)} =\bf 9.75\times 10^3\;\rm cm^3$$ $$V_f=\color{red}{\bf 9.75}\;\rm L$$ ____________________________________________________________ c) To draw the graph, we need to know the initial and final points of each process. - For the isochoric process; The initial point: $\rm (8\;\rm L, 2.25\;atm)$ The final point: $\rm (8\;\rm L, 3.1\;atm)$ - For the isobaric process; The initial point: $\rm (8\;\rm L, 2.25\;atm)$ The final point: $\rm (9.75\;\rm L, 2.25\;atm)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.