Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 4 - Review - Exercises: 53

Answer

$$\log_2 (\frac{ (x-y)^{\frac{3}{2}}}{(x^2 + y^2)^2})$$

Work Step by Step

$Combine$ $into$ $a$ $single$ $logarithm:$ $\frac{3}{2}\log_2 (x-y)$ - $2\log_2 (x^2+y^2)$ Use the Third Law of Logarithms for both portions $\frac{3}{2}\log_2 (x-y)$ = $\log_2 (x-y)^{\frac{3}{2}}$ $2\log_2 (x^2 + y^2)$ = $\log_2 (x^2 + y^2)^2$ $\log_2 (x-y)^{\frac{3}{2}}$ - $\log_2 (x^2 + y^2)^2$ Use the Second Law of Logarithms $\log_2 (x-y)^{\frac{3}{2}}$ - $\log_2 (x^2 + y^2)^2$ = $\log_2 (\frac{ (x-y)^{\frac{3}{2}}}{(x^2 + y^2)^2})$ $$\log_2 (\frac{ (x-y)^{\frac{3}{2}}}{(x^2 + y^2)^2})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.