Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.5 Exercises - Page 1122: 28

Answer

$div (\nabla f \times \nabla g)=0$

Work Step by Step

Need to prove that $div (\nabla f \times \nabla g)=0$ Let us consider that $F=A i+B j+C k$ Suppose $F=F_1i+F_2j+F_3k$ and $G=G_1i+G_2j+G_3k$ $div (F \times G)=\nabla \cdot (F \times G)$ $div (F \times G)=\dfrac{\partial}{\partial x}[G_3F_2-G_2F_3]-\dfrac{\partial}{\partial y}[G_3F_1-G_1F_3]+\dfrac{\partial}{\partial z}[G_2F_1-G_1F_2]$ $div (F \times G)=[G_1(\dfrac{\partial F_3}{\partial y}-\dfrac{\partial F_2}{\partial z})-G_2(\dfrac{\partial F_3}{\partial x}-\dfrac{\partial F_1}{\partial z})+G_3(\dfrac{\partial F_2}{\partial x}-\dfrac{\partial F_1}{\partial y})]-[F_1(\dfrac{\partial G_3}{\partial y}-\dfrac{\partial G_2}{\partial z})-F_2(\dfrac{\partial G_3}{\partial x}-\dfrac{\partial G_1}{\partial z})+F_3(\dfrac{\partial G_2}{\partial x}-\dfrac{\partial G_1}{\partial y})]$ or, $div (F \times G)=(curl F) \cdot G-F \cdot (curl G)$ Thus, we have $div (\nabla f \times \nabla g)=(curl (\nabla f)) \cdot (\nabla g)-(\nabla f) \cdot (curl (\nabla g))=0 \cdot (\nabla g)-(\nabla f) \cdot (0)=0$ Hence, $div (\nabla f \times \nabla g)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.