Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.5 Exercises - Page 1122: 31

Answer

a ) $\nabla r=\dfrac{\bf{r}}{r}$ b) $\nabla \times r=0$ c) $\nabla (1/r)=\dfrac{-r}{r^3}$ d) $\nabla \ln r=\dfrac{r}{r^2}$

Work Step by Step

a) $\nabla r=\dfrac{\partial r }{\partial x}i+\dfrac{\partial r }{\partial y}j+\dfrac{\partial r}{\partial z}k$ $=\dfrac{x }{\sqrt{x^2+y^2+z^2}} i+\dfrac{y}{\sqrt{x^2+y^2+z^2}} j+\dfrac{z}{\sqrt{x^2+y^2+z^2}} k$ $\nabla r=\dfrac{(xi+yj+zk)}{\sqrt{x^2+y^2+z^2}} =\dfrac{\bf{r}}{r}$ b) $\nabla \times r=\begin{vmatrix}i&j&k\\\dfrac{\partial}{\partial x}&\dfrac{\partial }{\partial y}&\dfrac{\partial }{\partial z}\\x&y&z\end{vmatrix}=(\dfrac{\partial z}{\partial y}-\dfrac{\partial y}{\partial z})i-(\dfrac{\partial z}{\partial x}-\dfrac{\partial x}{\partial z})j+(\dfrac{\partial y}{\partial x}-\dfrac{\partial x}{\partial y})k=0$ c) $\nabla (1/r)=\dfrac{\partial (1/r) }{\partial x}i+\dfrac{\partial (1/r) }{\partial y}j+\dfrac{\partial (1/r)}{\partial z}k=(\dfrac{-1}{r^2}) \nabla r$ Since, $\nabla r=\dfrac{\bf{r}}{r}$ Then, we have $\nabla (1/r)=\dfrac{-r}{r^3}$ d) $\nabla \ln r=\dfrac{\partial (\ln r) }{\partial x}i+\dfrac{\partial (\ln r) }{\partial y}j+\dfrac{\partial (\ln r)}{\partial z}k=(\dfrac{1}{r}) \nabla r$ Since, $\nabla r=\dfrac{\bf{r}}{r}$ Then, we have $\nabla \ln r=\dfrac{r}{r^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.