Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.3 Exercises - Page 1020: 40

Answer

$$\approx 20.420$$

Work Step by Step

$f(x,y) =x^3y^4+xy^2$ The volume under the surface $z=f(x,y)$ and above the region $D$ in the $xy$-plane can be expressed as follows: $$\ Volume =\iint_{D} f(x,y) \ dA$$ and the region $D$ using the point of intersection can be expressed as follows: $D=\left\{ (x, y) | -\sqrt {1-x^2} \leq y \leq \sqrt {1-x^2}, -1 \leq x \leq 1 \right\}$ $\ Volume ; V =\iint_{D} f(x,y) \ dA\\=\iint_{D} (3x^2+3y^2-8) \ dy \ dx $ or, $= \int_{-1}^{1} \int_{-\sqrt {1-x^2}}^{\sqrt {1-x^2}} (3x^2+3y^2-8) \ dy \ dx$ or, $ = 2\times \int_0^1 (2) \int_{0}^{\sqrt {1-x^2}} (3x^2+3y^2-8) dy dx $ or, $ = 4 \times \int_0^1 [3x^2 y +y^3 -8y]_{0}^{\sqrt {1-x^2}} $ or, $= 4 \times \int_0^1 (2x^2 \sqrt {1-x^2} -7 \sqrt {1-x^2} ) dx $ The integral can be computed by using a calculator as follows: $\ Volume; V = 4 \int_0^1 (2x^2 \sqrt {1-x^2} -7 \sqrt {1-x^2} dx ) \\ \approx 20.420$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.