Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.3 Exercises - Page 1020: 31

Answer

$\dfrac{1}{3}$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region $D$ in the xy-plane can be expressed as: $$\ Volume =\iint_{D} f(x,y) \space dA$$ We have $D$ is a circle having a radius of $1$ in the first quadrant, so, the region $D$ can be defined as: $D=\left\{ (x, y) | 0 \leq x \leq 1, \ 0 \leq y \leq \sqrt {1-x^2} \right\}$ Now, $V=\int_{0}^{1} \int_{0}^{\sqrt {1-x^2}} y dy \ dx \\ = \dfrac{1}{2} \times \int_{0}^{1} [y^2]_{0}^\sqrt {1-x^2}) dx \\ =\dfrac{1}{2} \times \int_{0}^{1} (1-x^2) \\=\int_{0}^{1} \dfrac{1}{2}-\dfrac{x^2}{2}\\= [\dfrac{x}{2}-\dfrac{x^3}{6}]_0^1\\=[\dfrac{1}{2}-0]-[\dfrac{(1)^3}{6}-0] \\ = \dfrac{1}{2}-\dfrac{1}{6} \\=\dfrac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.