Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.3 Exercises - Page 1020: 33

Answer

$\approx 0.713$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region $D$ in the xy-plane can be expressed as: $$\ Volume =\iint_{D} f(x,y) \space dA$$ The region $D$ can be defined as: $$D=\left\{ (x, y) | x^4 \leq y \leq 3x-x^2, \ 0 \leq x \leq 1.213 \right\} $$ Now, $V =\iint_{D} f(x,y) \ dA \\= \int_{0}^{1.213} \int_{x^4}^{3x-x^2}x dy \ dx \\ = \int_{0}^{1.213} [xy]_{x^4}^{3x-x^2} \ dx \\= \int_{0}^{1.213} 3x^2-x^3-x^5 \ dx \\=[x^3 -\dfrac{x^4}{4}-\dfrac{x^6}{6}]_0^{1.213} \\ = [(1.213)^3 -0]-[\dfrac{(1.213)^4}{4}-0]-[\dfrac{(1.213)^6}{6} -0] \\ \approx 0.713$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.