Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 987: 15

Answer

Maximum: $f(1,\sqrt 2,-\sqrt 2)=1+2\sqrt 2$ and Minimum: $f(1,-\sqrt 2,\sqrt 2)=1-2\sqrt 2$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z)=\lambda_1 \nabla g(x,y,z)+\lambda_2 \nabla h(x,y,z)$ This yields $\nabla f=\lt 1,2,0 \gt$ and $\lambda_1 \nabla g(x,y,z)+\lambda_2 \nabla h(x,y,z)= \lt \lambda_1,-\lambda_1+2\lambda_2y,-2\lambda_2 z \gt$ Using the constraint condition $y^2+z^2=4$we get, $y=-z$ If we use the above value of $y$ in second constraint , we get $y=z=\pm \sqrt 2$ Hence, Maximum: $f(1,\sqrt 2,-\sqrt 2)=1+2\sqrt 2$ and Minimum: $f(1,-\sqrt 2,\sqrt 2)=1-2\sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.