Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 987: 10

Answer

Maximum:$f(\pm \dfrac{\sqrt 3}{3},\pm \dfrac{\sqrt 3}{3},\pm \dfrac{\sqrt 3}{3})=\dfrac{1}{27}$ Minimum: $f(0,t,\pm \sqrt{1-t^2})=f(t,0,\pm \sqrt{1-t^2})=f(t,\pm \sqrt{1-t^2},0)=0$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z)=\lambda \nabla g(x,y,z)$ This yields $\nabla f=\lt \dfrac{2x}{x^2+1},\dfrac{2y}{y^2+1},\dfrac{2z}{z^2+1} \gt$ and $\lambda \nabla g=\lambda \lt 2x,2y,2z\gt$ Using the constraint condition $x^2+y^2+z^2=12$ we get, $\dfrac{2x}{x^2+1}=\lambda 2x, \dfrac{2y}{y^2+1}=\lambda 2y,\dfrac{2z}{z^2+1}=\lambda 2z$ After solving, we get $x=y=z$ Since, $g(x,y)=x^2+y^2+z^2=12$ gives $z=\pm 2$ Thus, $x=y=z=\pm 2$ Hence, Maximum:$f(\pm \dfrac{\sqrt 3}{3},\pm \dfrac{\sqrt 3}{3},\pm \dfrac{\sqrt 3}{3})=\dfrac{1}{27}$ Minimum: $f(0,t,\pm \sqrt{1-t^2})=f(t,0,\pm \sqrt{1-t^2})=f(t,\pm \sqrt{1-t^2},0)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.