Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 987: 12

Answer

Maximum:$1$ and minimum: $\dfrac{1}{3}$ or, Maximum:$f(0,0, \pm 1)= 1$ and minimum: $f(\pm \sqrt {\dfrac{1}{3}},\pm \sqrt {\dfrac{1}{3}},\pm \sqrt {\dfrac{1}{3}})=\dfrac{1}{3}$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z)=\lambda \nabla g(x,y,z)$ This yields $\nabla f=\lt 4x^3,4y^3,4z^3 \gt$ and $\lambda \nabla g=\lambda \lt 2x,2y,2z\gt$ Using the constraint condition $x^2+y^2+z^2=1$ we get, $4x^3=\lambda 2x ,4y^3=\lambda 2y,4z^3=\lambda 2z$ After solving, we get $x^2=y^2=z^2$ Since, $g(x,y)=x^2+y^2+z^2=1$ gives $x=\pm \dfrac{1}{\sqrt 3}$ Thus, $x=y=z=\pm \sqrt {\dfrac{1}{3}}$ .This yields eight different points, but each one has a minimum value $\dfrac{1}{3}$ Also, we have possible points: $x=y=0,z=\pm 1$. This yields two different points, but each one has a maximum value of $1$ Hence, maximum:$1$ and minimum: $\dfrac{1}{3}$ or, Maximum:$f(0,0, \pm 1)= 1$ and minimum: $f(\pm \sqrt {\dfrac{1}{3}},\pm \sqrt {\dfrac{1}{3}},\pm \sqrt {\dfrac{1}{3}})=\dfrac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.