Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 987: 11

Answer

Maximum:$\sqrt 3$ and minimum: $1$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z)=\lambda \nabla g(x,y,z)$ This yields $\nabla f=\lt 2x,2y,2z \gt$ and $\lambda \nabla g=\lambda \lt 4x^3,4y^3,4z^3\gt$ Using the constraint condition $x^4+y^4+z^4=1$ we get, $2x=\lambda 4x^3,2y=\lambda 4y^3,2z=\lambda 4z^3$ After solving, we get $x=y=z$ Since, $g(x,y)=x^4+y^4+z^4=1$ gives $x=\sqrt[4] {\dfrac{1}{3}}$ Thus, $x=y=z=\sqrt[4] {\dfrac{1}{3}}$ Also, we have possible points:$x=y=0,z=\pm 1$ Hence, maximum:$\sqrt 3$ and minimum: $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.