Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 987: 17

Answer

Maximum: $\dfrac{3}{2}$ and Minimum: $\dfrac{1}{2}$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z)=\lambda_1 \nabla g(x,y,z)+\lambda_2 \nabla h(x,y,z)$ This yields $\nabla f=\lt a,z+x,y, \gt$ and $\lambda_1 \nabla g(x,y,z)+\lambda_2 \nabla h(x,y,z)= \lt ay,ax+2by,2bz \gt$ Using the constraint condition we get, $x=\pm \sqrt 2$ After solving, $xy=1$ and $y^2+z^2=1$ we get $z=\pm \dfrac{1}{\sqrt2}$ and $y=1-z^2=1-\pm \dfrac{1}{\sqrt2}=\pm \dfrac{1}{\sqrt2}$ Hence, Maximum: $\dfrac{3}{2}$ and Minimum: $\dfrac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.