Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 876: 8

Answer

$ a.\quad$ see image $ b.\quad \mathrm{r}^{\prime}(t)=(-\sin t) \mathrm{i}+(\cos t)\mathrm{j}$, $ c.\quad$ see image

Work Step by Step

$a.$ Parametric equations: $\mathrm{r}(t):\quad\left\{\begin{array}{ll} x=1+\cos t & \\ y=2+\sin t & \end{array}\right.$ Apply $ \sin^{2}A+\cos^{2}A=1:$ $(x-1)^{2}=\cos^{2}t,$ $(y-2)^{2}=\sin^{2}t\qquad $so $(x-1)^{2}+(y-2)^{2}=1,$ a circle with radius 1, center at (1,2) see image $b.$ Differentiate $(\displaystyle \frac{d}{dt})$ each component function $\mathrm{r}^{\prime}(t):\quad\left\{\begin{array}{l} x=-\sin t\\ y=\cos t \end{array}\right.$ $\mathrm{r}^{\prime}(t)=(-\sin t) \mathrm{i}+(\cos t)\mathrm{j}$, $c. $ For $t_{o}$ = $\pi/6,$ position vector : black$\quad \mathrm{r}(t_{o})$=$\displaystyle \langle\frac{2+\sqrt{3}}{2}, \frac{5}{2}\rangle$ tangent vector: red$\quad \mathrm{r}^{\prime}(t_{o})$=$\displaystyle \langle-\frac{1}{2},\frac{\sqrt{3}}{2}\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.