Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 876: 20

Answer

$\mathrm{T} (\displaystyle \frac{\pi}{4})=\frac{1}{3\sqrt{2}}\mathrm{i}-\frac{1}{3\sqrt{2}}\mathrm{j}+\frac{4}{3\sqrt{2}}\mathrm{k}$.

Work Step by Step

Unit tangent vector at t:$\quad \mathrm{T}(t)= \displaystyle \frac{\mathrm{r}^{\prime}(t)}{|\mathrm{r}^{\prime}(t)|}$ Parametric equations: $\mathrm{r}(t):\quad\left\{\begin{array}{ll} x=\sin^{2}t & \\ y=\cos^{2}t & \\ z=\tan^{2}t & \end{array}\right.$ Differentiate $(\displaystyle \frac{d}{dt})$ each component function. x, y, z: chain rule $\mathrm{r}^{\prime}(t):\quad\left\{\begin{array}{ll} x=2\sin t\cdot\cos t & \\ \\ y=2\cos t\cdot\sin t\\ & \\ z=2\tan t\cdot\sec^{2}t & \end{array}\right. $ $\displaystyle \mathrm{r}^{\prime}(\frac{\pi}{4})=(2\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2})\mathrm{i}=(-2\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2})\mathrm{j}+(2\cdot 1\cdot(\sqrt{2})^{2})\mathrm{k}$ $\displaystyle \mathrm{r}^{\prime}(\frac{\pi}{4})==\mathrm{i}-\mathrm{j}+4\mathrm{k}$ $|\displaystyle \mathrm{r}^{\prime}(\frac{\pi}{4})|=\sqrt{1+1+16}=\sqrt{18}=3\sqrt{2}$ $\mathrm{T} (\displaystyle \frac{\pi}{4})=\frac{\mathrm{r}^{\prime}(\frac{\pi}{4})}{|\mathrm{r}^{\prime}(\frac{\pi}{4})|}=\frac{1}{3\sqrt{2}}(\mathrm{i}-\mathrm{j}+4\mathrm{k})=\frac{1}{3\sqrt{2}}\mathrm{i}-\frac{1}{3\sqrt{2}}\mathrm{j}+\frac{4}{3\sqrt{2}}\mathrm{k}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.