Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 876: 26

Answer

$x=2+ \dfrac{t}{2},y=ln 4+ \dfrac{t}{2},z=1+t$

Work Step by Step

From the given points we have $r(t)= \sqrt {t^2+3} i+ln(t^2+3) j+t k $ In order to find tangent vector $r'(t)$ we will have to take the derivative of $r(t)$ with respect to $t$. Thus, $r'(t)=\dfrac{t}{ \sqrt {t^2+3}}i+\dfrac{2t}{ t^2+3}j+1 k $ or, $r'(t)=\lt \dfrac{t}{ \sqrt {t^2+3}},\dfrac{2t}{ t^2+3},1 \gt $ $r'(1)=\lt \dfrac{1}{ \sqrt {(1)^2+3}},\dfrac{2(1)}{ (1)^2+3},1 \gt=\lt \dfrac{1}{2}, \dfrac{1}{2},1 \gt$ Equation of tangent line passing through the points $(2,ln 4,1)$ is: $r(t)=\lt (2+ \dfrac{t}{2}),(ln 4+ \dfrac{t}{2}), (1+t) \gt$ Therefore, the parametric equations of the line are: $x=2+ \dfrac{t}{2},y=ln 4+ \dfrac{t}{2},z=1+t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.