Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 876: 6

Answer

$ a.\quad$ see image $ b.\quad \mathrm{r}^{\prime}(t)=(e^{t}) \mathrm{i}-(e^{-t})\mathrm{j}$, $ c.\quad$ see image

Work Step by Step

$a.$ Parametric equations: $\mathrm{r}(t):\quad\left\{\begin{array}{ll} x=e^{t} & \\ y=e^{-t} & \end{array}\right.$ comparing y with x: $\displaystyle \quad y=x^{-1}=\frac{1}{x}$ and, since both x and y are positive, this is the part of the hyperbola in the 1st quadrant see image $b.$ Differentiate $(\displaystyle \frac{d}{dt})$ each component function $\mathrm{r}^{\prime}(t):\quad\left\{\begin{array}{l} x=e^{t}\\ y=-e^{-t} \end{array}\right.$ $\mathrm{r}^{\prime}(t)=(e^{t}) \mathrm{i}-(e^{-t})\mathrm{j}$, $c. $ For $t_{o}$ = $0,$ position vector : black$\quad \mathrm{r}(t_{o})$=$\langle 1,1\rangle$ tangent vector: red$\quad \mathrm{r}^{\prime}(t_{o})$=$\langle 1,-1\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.