Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 876: 5

Answer

$ a.\quad$ see image $ b.\quad \mathrm{r}^{\prime}(t) =(\cos t) \mathrm{i}-(2\sin t)\mathrm{j}$, $ c.\quad$ see image

Work Step by Step

$a.$ Parametric equations: $\mathrm{r}(t):\quad\left\{\begin{array}{ll} x=\sin t & \\ y=2\cos t & \end{array}\right.$ Apply $ \sin^{2}A+\cos^{2}A=1:$ halve y and square it $\displaystyle \Rightarrow (\frac{y}{2})^{2}=\cos^{2}t...$ we obtain: $x^{2}+\displaystyle \frac{y^{2}}{4}=1,\qquad $... an ellipse. see image $b.$ Differentiate $(\displaystyle \frac{d}{dt})$ each component function $\mathrm{r}^{\prime}(t):\quad\left\{\begin{array}{l} x=\cos t\\ y=-2\sin t \end{array}\right.$ $\mathrm{r}^{\prime}(t) =\langle\cos t,-2\sin t\rangle$ $\mathrm{r}^{\prime}(t)=(\cos t) \mathrm{i}-(2\sin t)\mathrm{j}$, $c. $ For t = $\pi/4,$ position vector : black$\quad \mathrm{r}(\pi/4)$=$\displaystyle \langle\frac{\sqrt{2}}{2},\sqrt{2}\rangle$ tangent vector: red$\quad \mathrm{r}^{\prime}(\pi/4)$=$\displaystyle \langle\frac{\sqrt{2}}{2},-\sqrt{2}\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.