Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 508: 29

Answer

$$x\ln \left( {x + \sqrt {{x^2} - 1} } \right) - \sqrt {{x^2} - 1} + C$$

Work Step by Step

$$\eqalign{ & \int {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} dx \cr & {\text{Integrate by parts }} \cr & {\text{Let }}u = \ln \left( {x + \sqrt {{x^2} - 1} } \right),{\text{ }} \cr & du = \frac{{1 + \frac{{2x}}{{2\sqrt {{x^2} - 1} }}}}{{x + \sqrt {{x^2} - 1} }}dx \cr & {\text{Simplifying}} \cr & du = \frac{{2\sqrt {{x^2} - 1} + 2x}}{{2\sqrt {{x^2} - 1} \left( {x + \sqrt {{x^2} - 1} } \right)}}dx \cr & du = \frac{{2\left( {\sqrt {{x^2} - 1} + x} \right)}}{{2\sqrt {{x^2} - 1} \left( {x + \sqrt {{x^2} - 1} } \right)}}dx \cr & du = \frac{1}{{\sqrt {{x^2} - 1} }}dx \cr & dv = dx \to v = x \cr & {\text{Use integration by parts formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} dx = x\ln \left( {x + \sqrt {{x^2} - 1} } \right) - \int {\frac{x}{{\sqrt {{x^2} - 1} }}} dx \cr & {\text{Integrating}} \cr & \int {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} dx = x\ln \left( {x + \sqrt {{x^2} - 1} } \right) - \sqrt {{x^2} - 1} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.