Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 508: 44

Answer

$2\sqrt{1+e^{x}}+\ln(\sqrt{1+e^{x}}-1)-\ln(\sqrt{1+e^{x}}+1)+C$

Work Step by Step

Substituting so that $u^{2}=1+e^{x},\qquad (u=\sqrt{1+e^{x}})$ $2udu=e^{x}dx$ $2udu=(u^{2}-1)dx$ $dx=\displaystyle \frac{2udu}{u^{2}-1}$ Since we have a rational function integrand, we can approach with partial fractions. $\displaystyle \int\frac{2u^{2}du}{u^{2}-1}=\int\frac{2u^{2}-2+2}{u^{2}-1}du=\int 2+\frac{2}{u^{2}-1}$ $\displaystyle \frac{2}{u^{2}-1}$=$\displaystyle \frac{2}{(u-1)(u+1)}$ $\displaystyle \frac{2}{(u-1)(u+1)}=\frac{A}{(u-1)}+\frac{B}{(u+1)}$ $2=Au+A+Bu-B$ $2=(A+B)u+(A-B)\Rightarrow\left\{\begin{array}{ll} A+B=0 & \\ A-B=2 & \Rightarrow A=1, B=-1 \end{array}\right.$ $\displaystyle \int\frac{2u^{2}du}{u^{2}-1}=\int 2du+\int\frac{1}{u-1}du-\int\frac{1}{u+1}du$ ... use table integrals 1 and 2 $=2u+\ln|u-1|-\ln|u+1|+C$ ... bring back x ... $=2\sqrt{1+e^{x}}+\ln|\sqrt{1+e^{x}}-1|-\ln|\sqrt{1+e^{x}}+1|+C$ ... the expressions in the absolute value brackets are always positive ... $=2\sqrt{1+e^{x}}+\ln(\sqrt{1+e^{x}}-1)-\ln(\sqrt{1+e^{x}}+1)+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.