Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.5 - Summary of Curve Sketching - 4.5 Exercises - Page 322: 27

Answer

A. The domain is $[-1,0)\cup (0, 1]$ B. There is no y-intercept. The x-intercepts are $-1, 1$ C. The function is an odd function. D. $\lim\limits_{x \to 0^-} \frac{\sqrt{1-x^2}}{x} = -\infty$ $\lim\limits_{x \to 0^+} \frac{\sqrt{1-x^2}}{x} = \infty$ $x = 0$ is a vertical asymptote. E. The graph is decreasing on the intervals $(-1,0)\cup (0,1)$ F. There is no local minimum or local maximum. G. The graph is concave up on the intervals $(-1,-0.8165)\cup (0, 0.8165)$ The graph is concave down on the intervals $(-0.8165, 0)\cup (0.8165,1)$ The points of inflection are $(-0.8165,-0.707)\cup (0.8165, 0.707)$ H. We can see a sketch of the curve below.

Work Step by Step

$y = \frac{\sqrt{1-x^2}}{x}$ A. The function is defined for real numbers such that $x \neq 0$ and $(1-x^2) \geq 0$: $x^2 \leq 1$ $-1 \leq x \leq 1$ The domain is $[-1,0)\cup (0, 1]$ B. Since $x \neq 0$, there is no y-intercept. When $y = 0$: $\frac{\sqrt{1-x^2}}{x} = 0$ $\sqrt{1-x^2} = 0$ $x = -1, 1$ The x-intercepts are $-1, 1$ C. $\frac{\sqrt{1-(-x)^2}}{-x} = -\frac{\sqrt{1-x^2}}{x}$ The function is an odd function. D. $\lim\limits_{x \to 0^-} \frac{\sqrt{1-x^2}}{x} = -\infty$ $\lim\limits_{x \to 0^+} \frac{\sqrt{1-x^2}}{x} = \infty$ $x = 0$ is a vertical asymptote. E. We can find values of $x$ such that $y' = 0$: $y' = \frac{(\frac{-x}{\sqrt{1-x^2}})(x)-(\sqrt{1-x^2})}{x^2}$ $y' = \frac{(-x^2)-(1-x^2)}{x^2~\sqrt{1-x^2}}$ $y' = \frac{-1}{x^2~\sqrt{1-x^2}}$ The are no values of $x$ such that $y' = 0$ When $-1 \lt x \lt 0$ or $0 \lt x \lt 1$, then $y' \lt 0$ The graph is decreasing on the intervals $(-1,0)\cup (0,1)$ F. There is no local minimum or local maximum. G. We can find the values of $x$ such that $y'' = 0$: $y'' = \frac{-(-1)(2x\sqrt{1-x^2}+\frac{-x^3}{\sqrt{1-x^2}})}{x^4~(1-x^2)}$ $y'' = \frac{2x(1-x^2)-x^3}{x^4~(1-x^2)^{3/2}}$ $y'' = \frac{2x-3x^3}{x^4~(1-x^2)^{3/2}}$ $y'' = \frac{2-3x^2}{x^3~(1-x^2)^{3/2}} = 0$ $2-3x^2 = 0$ $x^2 = \frac{2}{3}$ $x = \pm \sqrt{\frac{2}{3}}$ $x = -0.8165, 0.8165$ When $-1 \lt x \lt -0.8165$ or $0 \lt x \lt 0.8165$, then $y'' \gt 0$ The graph is concave up on the intervals $(-1,-0.8165)\cup (0, 0.8165)$ When $-0.8165 \lt x \lt 0$ or $0.8165 \lt x \lt 1$, then $y'' \lt 0$ The graph is concave down on the intervals $(-0.8165, 0)\cup (0.8165,1)$ When $x = -0.8165$, then $y = \frac{\sqrt{1-(-0.8165)^2}}{-0.8165} = -0.707$ When $x = 0.8165$, then $y = \frac{\sqrt{1-(0.8165)^2}}{0.8165} = 0.707$ The points of inflection are $(-0.8165,-0.707)\cup (0.8165, 0.707)$ H. We can see a sketch of the curve below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.