Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.5 - Summary of Curve Sketching - 4.5 Exercises - Page 322: 33

Answer

A. The domain is $(-\infty, \infty)$ B. The y-intercept is $0$ The x-intercepts are $\pi~n,$ where $n$ is an integer C. The function is an odd function. The function is periodic with a period of $2\pi$ D. There are no asymptotes. E. The function is decreasing on the intervals $(\frac{\pi}{2}, \pi)\cup (\pi, \frac{3\pi}{2})$ The function is increasing on the intervals $(0, \frac{\pi}{2})\cup (\frac{3\pi}{2}, 2\pi)$ F. The local maxima are $(\frac{\pi}{2} +2\pi~n, 1)$ The local minima are $(\frac{3\pi}{2} +2\pi~n, -1)$ G. The graph is concave down on the intervals $(0.96, 2.19)\cup (\pi, 4.10)\cup (5.33, 2\pi)$ The graph is concave up on the intervals $(0, 0.96)\cup (2.19, \pi)\cup (4.10, 5.33)$ The points of inflection are $(0, 0), (0.96, 0.55), (2.19, 0.55),(\pi,0), (4.10, -0.55),$ and $(5.35,-0.55)$ H. We can see a sketch of the curve below.

Work Step by Step

$y = sin^3~x$ A. The function is defined for all real numbers. The domain is $(-\infty, \infty)$ B. When $x=0$, then $y = sin^3~0 = 0$ The y-intercept is $0$ When $y = 0$: $sin^3~x = 0$ $sin~x = 0$ $x = \pi~n,$ where $n$ is an integer The x-intercepts are $\pi~n,$ where $n$ is an integer C. $sin^3~(-x) = -sin^3~x$ The function is an odd function. Since $~~sin~x~~$ is periodic with a period of $2\pi$, then $~~y = sin^3~x~~$ is periodic with a period of $2\pi$ D. We can consider the limits $\lim\limits_{x \to -\infty} sin^3~x$ and $\lim\limits_{x \to \infty} sin^3~x$ The function does not converge to one value as $~~x\to -\infty~~$ and $~~x \to \infty,~~$ so these limits do not exist. There are no asymptotes. E. We can find values of $x$ such that $y' = 0$: $y' =3~sin^2~x~cos~x = 0$ $sin~x = 0$ or $cos~x = 0$ $x = \pi~n,$ where $n$ is an integer $x = \frac{\pi}{2}+\pi~n,$ where $n$ is an integer Therefore: $x = \frac{\pi}{2}~n,$ where $n$ is an integer When $\frac{\pi}{2} \lt x \lt \pi$ or $\pi \lt x \lt \frac{3\pi}{2}$, then $y' \lt 0$ The function is decreasing on the intervals $(\frac{\pi}{2}, \pi)\cup (\pi, \frac{3\pi}{2})$ When $0 \lt x \lt \frac{\pi}{2}$ or $\frac{3\pi}{2} \lt x \lt 2\pi$, then $y' \gt 0$ The function is increasing on the intervals $(0, \frac{\pi}{2})\cup (\frac{3\pi}{2}, 2\pi)$ F. When $x = \frac{\pi}{2} +2\pi~n$ then $y = sin^3~(\frac{\pi}{2}+2\pi~n) = 1$ The local maxima are $(\frac{\pi}{2} +2\pi~n, 1)$ When $x = \frac{3\pi}{2} +2\pi~n$ then $y = sin^3~(\frac{3\pi}{2}+2\pi~n) = -1$ The local minima are $(\frac{3\pi}{2} +2\pi~n, -1)$ G. We can find the values of $x$ such that $y'' = 0$: $y'' =6~sin~x~cos^2~x - 3~sin^3~x = 0$ $6~sin~x~cos^2~x = 3~sin^3~x$ $sin~x = 0$ or $2~cos^2~x = sin^2~x$ $sin~x = 0$ or $tan^2~x = 2$ $sin~x = 0$ or $tan~x = \pm~\sqrt{2}$ $x = \pi n, 0.96+2\pi~n, 2.19+2\pi~n, 4.10+2\pi~n, 5.33+2\pi~n$ where $n$ is an integer The graph is concave down on the intervals $(0.96, 2.19)\cup (\pi, 4.10)\cup (5.33, 2\pi)$ The graph is concave up on the intervals $(0, 0.96)\cup (2.19, \pi)\cup (4.10, 5.33)$ When $x= 0$, then $y = sin^3~0 = 0$ When $x= 0.96$, then $y = sin^3~0.96 = 0.55$ When $x= 2.19$, then $y = sin^3~2.19 = 0.55$ When $x= \pi$, then $y = sin^3~\pi = 0$ When $x= 4.10$, then $y = sin^3~4.10 = -0.55$ When $x= 5.33$, then $y = sin^3~5.33 = -0.55$ The points of inflection are $(0, 0), (0.96, 0.55), (2.19, 0.55),(\pi,0), (4.10, -0.55),$ and $(5.35,-0.55)$ Note that the points of inflection repeat periodically with a period of $2\pi$ H. We can see a sketch of the curve below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.