Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.5 - Summary of Curve Sketching - 4.5 Exercises - Page 322: 43

Answer

A. The domain is $(-\infty, \infty)$ B. The y-intercept is $\frac{1}{2}$ There are no x-intercepts. C. The function is not an even function or an odd function. D. $\lim\limits_{x \to -\infty} \frac{1}{1+e^{-x}} = 0$ $y = 0$ is a horizontal asymptote. $\lim\limits_{x \to \infty} \frac{1}{1+e^{-x}} = 1$ $y = 1$ is a horizontal asymptote. E. The function is increasing on the interval $(-\infty, \infty)$ F. There is no local maximum or local minimum. G. The graph is concave down on the interval $(0, \infty)$ The graph is concave up on the interval $(-\infty, 0)$ The point of inflection is $(0, \frac{1}{2})$ H. We can see a sketch of the curve below.

Work Step by Step

$y = \frac{1}{1+e^{-x}}$ A. The function is defined for all real numbers. The domain is $(-\infty, \infty)$ B. When $x=0$, then $y = \frac{1}{1+e^{-0}} = \frac{1}{1+1} = \frac{1}{2}$ The y-intercept is $\frac{1}{2}$ When $y = 0$: $\frac{1}{1+e^{-x}} = 0$ There are no values of $x$ such that $y = 0$ There are no x-intercepts. C. The function is not an even function or an odd function. D. $\lim\limits_{x \to -\infty} \frac{1}{1+e^{-x}} = 0$ $y = 0$ is a horizontal asymptote. $\lim\limits_{x \to \infty} \frac{1}{1+e^{-x}} = 1$ $y = 1$ is a horizontal asymptote. E. We can find the values of $x$ such that $y' = 0$: $y' = \frac{-(-e^{-x})}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})^2} = 0$ There are no values of $x$ such that $y' = 0$ For all values of $x,~~~$ $y' \gt 0$ The function is increasing on the interval $(-\infty, \infty)$ F. There is no local maximum or local minimum. G. We can find the values of $x$ such that $y'' = 0$: $y'' = \frac{(-e^{-x})(1+e^{-x})^2-(e^{-x})(2)(1+e^{-x})(-e^{-x})}{(1+e^{-x})^4}$ $y'' = \frac{(-e^{-x})(1+e^{-x})-(e^{-x})(2)(-e^{-x})}{(1+e^{-x})^3}$ $y'' = \frac{e^{-2x}-e^{-x}}{(1+e^{-x})^3} = 0$ $e^{-2x}-e^{-x} = 0$ $e^{-2x} = e^{-x}$ $e^{-x} = 1$ $\frac{1}{e^x} = 1$ $e^x = 1$ $x = 0$ When $x \gt 0$, then $y'' \lt 0$ The graph is concave down on the interval $(0, \infty)$ When $x \lt 0$, then $y'' \gt 0$ The graph is concave up on the interval $(-\infty, 0)$ When $x = 0$, then $y = \frac{1}{1+e^{-0}} = \frac{1}{1+1} = \frac{1}{2}$ The point of inflection is $(0, \frac{1}{2})$ H. We can see a sketch of the curve below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.