Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 9 - Section 9.6 - Properties of Logarithms - Exercise Set: 26

Answer

$log_{3}50$

Work Step by Step

The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number). Therefore, $2log_{3}5+log_{3}2= log_{3}5^{2}+log_{3}2$. The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$). Therefore, $ log_{3}5^{2}+log_{3}2= log_{3}(5^{2}\times 2)= log_{3}(25\times 2)= log_{3}50$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.