University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 26 - Direct-Current Circuits - Problems - Exercises - Page 873: 26.5

Answer

(a) 3.5 A (b) 4.5 A (c) 3.15 A (d) 3.25 A

Work Step by Step

(a) The combination of $R_{2}$ and $R_{3}$is $$R_{23} = R_{2} + R_{3} = 30\mathrm{~\Omega} $$ This combination is in parallel with $R_{1}$, so the equivalent resistance for it is \begin{align*} R_{\text{eq}} = \dfrac{R_{1}R_{23}}{R_{1} + R_{23} } = \dfrac{(15 \mathrm{~\Omega})(30 \mathrm{~\Omega})}{15\mathrm{~\Omega} + 30 \mathrm{~\Omega} } =10 \mathrm{~\Omega} \end{align*} Using this value of $R_{\text{eq}} $ in Ohm's law to get the current \begin{align*} I_{ab} = \dfrac{V}{R_{\text{eq}}} = \dfrac{35.0 \,\text{V}}{10 \mathrm{~\Omega}} = \boxed{3.5 \,\text{A}} \end{align*} (b) When the battery is connected to $bc$, $R_{1}$ and $R_{3}$ are in series and their equibalent is $R_{13} = R_{1} + R_{3} = 35 \mathrm{~\Omega} $. This combination is in parallel with $R_{2}$. So, their combination is \begin{align*} R_{\text{eq}} = \dfrac{R_{2}R_{13}}{R_{2} + R_{13} } = \dfrac{(10 \mathrm{~\Omega})(35 \mathrm{~\Omega})}{10 \mathrm{~\Omega} + 35 \mathrm{~\Omega} } =7.78 \mathrm{~\Omega} \end{align*} Again we apply Ohm's law to get $I_{bc}$ \begin{align*} I_{bc} = \dfrac{V}{R_{\text{eq}}} = \dfrac{35.0 \,\text{V}}{7.78 \mathrm{~\Omega}} = \boxed{4.5\,\text{A}} \end{align*} (c) The same steps as on parts (a) and (b) \begin{align*} R_{\text{eq}} = \dfrac{R_{3}R_{12}}{R_{3} + R_{12} } = \dfrac{(20 \mathrm{~\Omega})(25 \mathrm{~\Omega})}{20 \mathrm{~\Omega} + 25 \mathrm{~\Omega} } =11.11 \mathrm{~\Omega} \end{align*} Use Ohm's law to get the current across (ac) \begin{align*} I_{ac} = \dfrac{V}{R_{\text{eq}}} = \dfrac{35.0 \,\text{V}}{11.11 \mathrm{~\Omega}} = \boxed{3.15 \,\text{A}} \end{align*} (d) To find the current $I_{bc}$ \begin{equation*} I_{bc} = \dfrac{\varepsilon}{R_{eq} + r} \end{equation*} Where $r$ is the internal resistance of the battery $3\mathrm{~\Omega}$, $R_{eq} = 7.78 \mathrm{~\Omega}$. \begin{align*} I_{bc} = \dfrac{\varepsilon}{R_{eq} + r} = \dfrac{35.0 \,\text{V}}{7.78 \mathrm{~\Omega} + 3 \mathrm{~\Omega} } = \boxed{3.25 \,\text{A}} \end{align*}  
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.