Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 412: 7-178

Answer

$ W_{\text {net,in }}=14.2\text{ kJ}$ $Q_{\text {net,out }}=14.2\text{ kJ}$

Work Step by Step

Analysis The properties of the steam at various states are (Tables A-4 through A-6) $ \begin{aligned} & \left.\begin{array}{l} P_1=400 \mathrm{kPa} \\ T_1=350^{\circ} \mathrm{C} \end{array}\right\} \begin{array}{l} u_1=2884.5 \mathrm{~kJ} / \mathrm{kg} \\ v_1=0.71396 \mathrm{~m}^3 / \mathrm{kg} \\ s_1=7.7399 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \end{array} \\ & \left.\begin{array}{l} P_2=150 \mathrm{kPa} \\ T_2=350^{\circ} \mathrm{C} \end{array}\right\} \begin{array}{l} u_2=2888.0 \mathrm{~kJ} / \mathrm{kg} \\ s_2=8.1983 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \end{array} \\ & \left.\begin{array}{l} P_3=400 \mathrm{kPa} \\ s_3=s_2=8.1983 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \end{array}\right\} \begin{array}{l} u_3=3132.9 \mathrm{~kJ} / \mathrm{kg} \\ v_3=0.89148 \mathrm{~m}^3 / \mathrm{kg} \end{array} \end{aligned} $ The mass of the steam in the cylinder and the volume at state 3 are $ \begin{aligned} m & =\frac{V_1}{V_1}=\frac{0.3 \mathrm{~m}^3}{0.71396 \mathrm{~m}^3 / \mathrm{kg}}=0.4202 \mathrm{~kg} \\ V_3 & =m V_3=(0.4202 \mathrm{~kg})\left(0.89148 \mathrm{~m}^3 / \mathrm{kg}\right)=0.3746 \mathrm{~m}^3 \end{aligned} $ Process 1-2: Isothermal expansion $\left(T_2=T_1\right)$ $ \begin{aligned} & \Delta S_{\mathrm{l}-2}=m\left(s_2-s_1\right)=(0.4202 \mathrm{~kg})(8.1983-7.7399) \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}=0.1926 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \\ & Q_{\mathrm{m}, 1-2}=T_1 \Delta S_{1-2}=(350+273 \mathrm{~K})(0.1926 \mathrm{~kJ} / \mathrm{K})=120 \mathrm{~kJ} \\ & W_{\text {out }, 1-2}=Q_{\mathrm{in}, 1-2}-m\left(u_2-u_1\right)=120 \mathrm{~kJ}-(0.4202 \mathrm{~kg})(2888.0-2884.5) \mathrm{kJ} / \mathrm{kg}=118.5 \mathrm{~kJ} \end{aligned} $ Process 2-3: Isentropic (reversible-adiabatic) compression $\left(s_3=s_2\right)$ $ \begin{aligned} & W_{\mathrm{in}, 2-3}=m\left(u_3-u_2\right)=(0.4202 \mathrm{~kg})(3132.9-2888.0) \mathrm{kJ} / \mathrm{kg}=102.9 \mathrm{~kJ} \\ & Q_{2.3}=0 \mathrm{~kJ} \end{aligned} $ Process 3-1: Constant pressure compression process $\left(P_1=P_3\right)$ $ \begin{aligned} & W_{\mathrm{in,3-1}}=P_3\left(V_3-V_1\right)=(400 \mathrm{kPa})(0.3746-0.3)=29.8 \mathrm{~kJ} \\ & Q_{\text {out } 3-1-1}=W_{\mathrm{in,3-1}}-m\left(u_1-u_3\right)=29.8 \mathrm{~kJ}-(0.4202 \mathrm{~kg})(2884.5-3132.9)=134.2 \mathrm{~kJ} \end{aligned} $ The net work and net heat transfer are $ \begin{aligned} & W_{\text {net,in }}=W_{\mathrm{in}, 3-1}+W_{\mathrm{in}, 2-3}-W_{\text {out }, 1-2}=29.8+102.9-118.5=14.2 \mathrm{~kJ} \\ & Q_{\text {net,in }}=Q_{\text {in, } 1-2}-Q_{\text {oat }, 3-1}=120-134.2=-14.2 \mathrm{~kJ} \longrightarrow Q_{\text {net, out }}=\mathbf{1 4 . 2}\ \mathbf{k J} \\ & \end{aligned} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.