Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 409: 7-153

Answer

$\dot{m}=0.2976\text{ kg/s}$ $\dot{S}_{\mathrm{gen}}=0.0854\text{ kW/K}$

Work Step by Step

(a) There is only one inlet and one exit, and thus $\dot{m}_1=m_2=\dot{m}$. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as $ \underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\text {in }}=\underbrace{\Delta \dot{E}_{\text {stem }} \lambda_0}_{\text {system (steady) }}=0 $ Rate of net energy trasfer Rate of changein intemal, kinetic, byheat, work, mind mess potentialetce. energies $ \begin{aligned} \dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\ \dot{m}\left(h_1+V_1^2 / 2\right) & =\dot{m}\left(h_2+V_2^2 / 2\right) \quad(\sin c \dot{Q} \cong \dot{\mathrm{W}} \cong \Delta \mathrm{pe} \cong 0) \\ 0 & =h_2-h_1+\frac{V_2^2-V_1^2}{2} \end{aligned} $ Substituting, $ h_2=3137.7 \mathrm{~kJ} / \mathrm{kg}-\frac{(390 \mathrm{~m} / \mathrm{s})^2-(55 \mathrm{~m} / \mathrm{s})^2}{2}\left(\frac{1 \mathrm{~kJ} / \mathrm{kg}}{1000 \mathrm{~m}^2 / \mathrm{s}^2}\right)=3063.1 \mathrm{~kJ} / \mathrm{kg} $ Thus, The mass flow rate of steam is $ \dot{m}=\frac{1}{v_1} A_1 V_1=\frac{1}{0.13860 \mathrm{~m}^3 / \mathrm{kg}}\left(7.5 \times 10^{-4} \mathrm{~m}^2\right)(55 \mathrm{~m} / \mathrm{s})=0.2976 \mathrm{~kg} / \mathrm{s} $ (b) Again we take the nozzle to be the system. Noting that no heat crosses the boundaries of this combined system, the entropy balance for it can be expressed as $ \begin{aligned} & \underbrace{\dot{S}_{\text {in }}-\dot{S}_{\text {out }}}_{\begin{array}{c} \text { Rateof net entropy tensfer } \\ \text { by heat and mass } \end{array}}+\underbrace{\dot{S}_{\text {gen }}}_{\begin{array}{c} \text { Rate of entropy } \\ \text { generation } \end{array}}=\underbrace{\Delta \dot{S}_{\text {systema }}}_{\begin{array}{c} \text { Rate of change } \\ \text { of entropy } \end{array}}=0 \\ & \dot{m} s_1-\dot{m} s_2+\dot{S}_{\mathrm{gen}}=0 \\ & \dot{S}_{\mathrm{gen}}=\dot{m}\left(s_2-s_1\right) \\ & \end{aligned} $ Substituting, the rate of entropy generation during this process is determined to be $ \dot{S}_{\mathrm{gen}}=\dot{m}\left(s_2-s_1\right)=(0.2976 \mathrm{~kg} / \mathrm{s})(7.2454-6.9583) \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}=\mathbf{0 . 0 8 5 4} \mathbf{~k W} / \mathbf{K} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.