Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 402: 7-70

Answer

See answer below.

Work Step by Step

For ideal gases: $\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}$ Eq. 7-33: $s_2-s_1=c_v\ln\left(\dfrac{T_2}{T_1}\right)+R\ln\left(\dfrac{V_2}{V_1}\right)$ $s_2-s_1=c_v\ln\left(\dfrac{T_2}{T_1}\right)+R\ln\left(\dfrac{P_1T_2}{P_2T_1}\right)$ $s_2-s_1=c_v\ln\left(\dfrac{T_2}{T_1}\right)+R\ln\left(\dfrac{T_2}{T_1}\right)-R\ln\left(\dfrac{P_2}{P_1}\right)$ Since $c_p=c_v+R$ $s_2-s_1=c_p\ln\left(\dfrac{T_2}{T_1}\right)-R\ln\left(\dfrac{P_2}{P_1}\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.