Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 645: 11-62E

Answer

$\dot{W}_{\text {in }}=6.176\text{ kW}$ $\mathrm{COP}_{\mathrm{R}}=1.85$

Work Step by Step

From the refrigerant tables (Tables A-11E, A-12E, and A-13E), $$ \begin{aligned} & \left.\begin{array}{l} P_3=180 \mathrm{psia} \\ \text { sat. liquid } \end{array}\right\} h_3=h_{f@180 \mathrm{psia}}=51.51\ \mathrm{Btu} / \mathrm{lbm} \\ & h_4=h_6 \cong h_3=51.51\ \mathrm{Btu} / \mathrm{lbm} \text { (throttling) } \\ & \left.\begin{array}{l} P_5=60 \mathrm{psia} \\ \text { sat. vapor } \end{array}\right\} h_5=h_{g \text { @ } 60 \mathrm{psia}}=110.13\ \mathrm{Btu} / \mathrm{lbm} \\ & \left.\begin{array}{l} \begin{array}{l} P_7=10 \mathrm{psia} \\ \text { sat. vapor } \end{array} \end{array}\right\} h_7=h_{g \text { @ } 10 \mathrm{psia}}=98.69\ \mathrm{Btu} / \mathrm{lbm} \end{aligned} $$ The mass flow rates through the high-temperature and low-temperature evaporators are found by $$ \begin{aligned} & \dot{Q}_{L, 1}=\dot{m}_1\left(h_5-h_4\right) \longrightarrow \dot{m}_1=\frac{\dot{Q}_{L, 1}}{h_5-h_4}=\frac{15,000 \mathrm{Btu} / \mathrm{h}}{(110.13-51.51) \mathrm{Btu} / \mathrm{lbm}}=255.9\ \mathrm{lbm} / \mathrm{h} \\ & \dot{Q}_{L, 2}=\dot{m}_2\left(h_7-h_6\right) \longrightarrow \dot{m}_2=\frac{\dot{Q}_{L, 2}}{h_7-h_6}=\frac{24,000 \mathrm{Btu} / \mathrm{h}}{(98.69-51.51) \mathrm{Btu} / \mathrm{lbm}}=508.7\ \mathrm{lbm} / \mathrm{h} \end{aligned} $$ Applying an energy balance to the point in the system where the two evaporator streams are recombined gives $$ \dot{m}_1 h_5+\dot{m}_2 h_7=\left(\dot{m}_1+\dot{m}_2\right) h_1 \longrightarrow h_1=\frac{\dot{m}_1 h_5+\dot{m}_2 h_7}{\dot{m}_1+\dot{m}_2}=\frac{(255.9)(110.13)+(508.7)(98.69)}{255.9+508.7}=102.52\ \mathrm{Btu} / \mathrm{lbm} $$ Then, $$ \begin{aligned} & \left.\begin{array}{l} P_1=10 \mathrm{psia} \\ h_1=102.52\ \mathrm{Btu} / \mathrm{lbm} \end{array}\right\} s_1=0.2382\ \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & \left.\begin{array}{l} P_2=180\ \mathrm{psia} \\ s_2=s_1 \end{array}\right\} h_2=130.08\ \mathrm{Btu} / \mathrm{lbm} \end{aligned} $$ The power input to the compressor is $$ \dot{W}_{\text {in }}=\left(\dot{m}_1+\dot{m}_2\right)\left(h_2-h_1\right)=(255.9+508.7) \mathrm{lbm} / \mathrm{h}(130.08-102.52) \mathrm{Btu} / \mathrm{lbm}\left(\frac{1 \mathrm{~kW}}{3412.14 \mathrm{Btu} / \mathrm{h}}\right)=6.176 \mathrm{~kW} $$ The COP of this refrigeration system is determined from its definition, $$ \mathrm{COP}_{\mathrm{R}}=\frac{\dot{Q}_L}{\dot{W}_{\text {in }}}=\frac{(24,000+15,000) \mathrm{Btu} / \mathrm{h}}{6.176 \mathrm{~kW}}\left(\frac{1 \mathrm{~kW}}{3412.14 \mathrm{Btu} / \mathrm{h}}\right)=\mathbf{1 . 8 5} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.