Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 644: 11-58

Answer

a) $\dot{m}_A=0.1689 \mathrm{~kg} / \mathrm{s}$ b) $\dot{Q}_L=18.46\text{ kW}$ c) $COP_{y}=2.12$

Work Step by Step

(a) The properties are to be obtained from the refrigerant tables (Tables A-11 through A-13): \begin{aligned} & h_1=h_{g @ 160 \mathrm{kPa}}=241.14 \mathrm{~kJ} / \mathrm{kg} \\ & s_1=s_{g @ 160 \mathrm{kPa}}=0.9420 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \\ & \left.\begin{array}{l} P_2=500 \mathrm{kPa} \\ s_2=s_1 \end{array}\right\} h_{2 s}=264.55 \mathrm{~kJ} / \mathrm{kg} \\ & \eta_C=\frac{h_{2 s}-h_1}{h_2-h_1} \\ & 0.80=\frac{264.55-241.14}{h_2-241.14} \longrightarrow h_2=270.41 \mathrm{~kJ} / \mathrm{kg} \\ & h_3=h_{f @ 500 \mathrm{kPa}}=73.32 \mathrm{~kJ} / \mathrm{kg} \\ & h_4=h_3=73.32 \mathrm{~kJ} / \mathrm{kg} \\ & h_5=h_{g @ 400 \mathrm{kPa}}=255.61 \mathrm{~kJ} / \mathrm{kg} \\ & s_5=s_{g @ 400 \mathrm{kPa}}=0.9271 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \\ & \left.\begin{array}{l} \begin{array}{l} P_6=1400 \mathrm{kPa} \\ s_6 \end{array}=s_5 \end{array}\right\} h_{6 s}=281.56 \mathrm{~kJ} / \mathrm{kg} \\ & \eta_C=\frac{h_{6 s}-h_5}{h_6-h_5} \\ & 0.80=\frac{281.56-255.61}{h_6-255.61} \longrightarrow h_6=288.04 \mathrm{~kJ} / \mathrm{kg} \\ & h_7=h_{f @ 1400 \mathrm{kPa}}=127.25 \mathrm{~kJ} / \mathrm{kg} \\ & h_8=h_7=127.25 \mathrm{~kJ} / \mathrm{kg} \\ & \end{aligned} The mass flow rate of the refrigerant through the upper cycle is determined from an energy balance on the heat exchanger $$ \begin{aligned} \dot{m}_A\left(h_5-h_8\right) & =\dot{m}_B\left(h_2-h_3\right) \\ \dot{m}_A(255.61-127.25) \mathrm{kJ} / \mathrm{kg} & =(0.11 \mathrm{~kg} / \mathrm{s})(270.41-73.32) \mathrm{kJ} / \mathrm{kg} \longrightarrow \dot{m}_A\\=\mathbf{0 . 1 6 8 9 k g} / \mathbf{s} \end{aligned} $$ (b) The rate of heat removal from the refrigerated space is $$ \dot{Q}_L=\dot{m}_B\left(h_1-h_4\right)=(0.11 \mathrm{~kg} / \mathrm{s})(241.14-73.32) \mathrm{kJ} / \mathrm{kg}=18.46 \mathrm{~kW} $$ (c) The power input and the COP are $$ \begin{aligned} \dot{W}_{\text {in }} & =\dot{m}_A\left(h_6-h_5\right)+\dot{m}_B\left(h_2-h_1\right) \\ & =(0.11 \mathrm{~kg} / \mathrm{s})(288.04-255.61) \mathrm{kJ} / \mathrm{kg}+(0.1689 \mathrm{~kg} / \mathrm{s})(270.41-241.14) \mathrm{kJ} / \mathrm{kg} \\ & =8.698 \mathrm{~kW} \\ \mathrm{COP} & =\frac{\dot{Q}_{\mathrm{L}}}{\dot{W}_{\text {in }}}=\frac{18.46}{8.698}=\mathbf{2 . 1 2} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.