Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 30 - Quantum Physics - Problems and Conceptual Exercises - Page 1075: 55

Answer

Please see the work below.

Work Step by Step

(a) We know that $\lambda_f\lambda_i=\frac{6.63\times 10^{-34}J.s}{(9.11\times 10^{-31})(3\times 10^8m/s)}[1-cos175^{\circ}]$ $\lambda_f-\lambda_i=0.0048\times 10^{-9}m=0.0048nm$ Now $\lambda_i=0.320nm-0.0048nm=0.315nm$ (b) As $E_i=\frac{hc}{\lambda_i}$ $\implies E_i=\frac{(6.63\times 10^{-34}J.s)(3\times 10^8m/s)}{0.315\times 10^{-9}m}=6.31\times 10^{-16}J$ $E_i=3.94KeV$ and $E_f=\frac{hc}{\lambda_f}$ $E_f=\frac{(6.63\times 10^{-34}J.s)(3\times 10^8m/s)}{0.315\times 10^{-9}m}$ $E_f=6.22\times 10^{-16}J=3.88KeV$ (c) We can find the kinetic energy of the recoil electron as follows: $K=E_i-E_f$ We plug in the known values to obtain: $K=(3.94IKeV)-(3.88KeV)$ $K=0.06eV=60eV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.