Answer
$1.51K\Omega$
Work Step by Step
As $X_c=\frac{1}{\omega C}$
$\implies X_c=\frac{1}{2\pi(60.0)(12.8\times 10^6)}=207\Omega$
$X_L=\omega L=2\pi(60.0)(0.105)=39.6\Omega$
Now $Z=\sqrt{R^2+(X_L-X_c)^2}$
We plug in the known values to obtain:
$Z=\sqrt{(1500)^2+(39.6-207)^2}=1509\Omega=1.51K\Omega$