Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 8 - Rotational Motion - General Problems - Page 228: 92

Answer

8.21x$10^{-6}$

Work Step by Step

The Moon's spin angular momentum can be calculated by $$L_{spin}=I_{spin}\omega_{spin}=\frac{2}{5}MR^2_{Moon}\omega_{spin}$$ The orbital angular momentum can be calculated by $$L_{orbit}=I_{orbit}\omega_{orbit}=MR^2_{orbit}\omega_{orbit}$$ Because the same side of the Moon always face the Earth, $\omega_{spin}=\omega_{orbit}$. $$\frac{L_{spin}}{L_{orbit}}=\frac{\frac{2}{5}MR^2_{Moon}\omega_{spin}}{MR^2_{orbit}\omega_{orbit}}=\frac{2}{5}(\frac{R_{Moon}}{R_{orbit}})^2=0.4(\frac{1.74\times10^6m}{3.84\times10^8m})^2$$ $$=8.21\times10^{-6}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.