Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 8 - Rotational Motion - General Problems - Page 226: 77

Answer

When $R_1 = 0.025~m$, then $f = 480~rpm$ When $R_2 = 0.058~m$, then $f = 210~rpm$

Work Step by Step

We can use the speed $v$ to find $\omega$. $\omega = \frac{v}{R}~rad/s$ We can use $\omega$ to find the frequency $f$ in rpm: $f = (\frac{\omega~rad/s}{2\pi~rad/rev})(\frac{60~s}{1~min})$ $f = (\frac{60~v}{2\pi~R})~rpm = (\frac{30~v}{\pi~R})~rpm$ We can find $f$ when $R_1 = 0.025~m$: $f = (\frac{30~v}{\pi~R})~rpm = (\frac{(30)(1.25)}{0.025~\pi})~rpm = 480~rpm$ When $R_1 = 0.025~m$, then $f = 480~rpm$. Next, we find $f$ when $R_2 = 0.058~m$: $f = (\frac{30~v}{\pi~R})~rpm = (\frac{(30)(1.25)}{0.058~\pi})~rpm = 210~rpm$ When $R_2 = 0.058~m$, then $f = 210~rpm$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.