Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 5 - Circular Motion; Gravitation - Problems - Page 135: 63

Answer

See answer.

Work Step by Step

We are asked to use Kepler’s third law to find the orbital radius of each moon, using Io’s data. $$(\frac{r_1}{r_2})^3=(\frac{T_1}{T_2})^2$$ $$r_1=r_2 (\frac{T_1}{T_2})^{2/3}$$ Now apply this to the 3 moons other than Io. $$r_{Europa}=r_{Io} (\frac{T_{Europa}}{T_{Io}})^{2/3}$$ $$r_{Europa}=(422\times10^3 km) (\frac{3.55d}{1.77d})^{2/3}=671\times10^3 km $$ $$r_{Ganymede}=r_{Io} (\frac{T_{ Ganymede }}{T_{Io}})^{2/3}$$ $$r_{ Ganymede }=(422\times10^3 km) (\frac{7.16d}{1.77d})^{2/3}=1070\times10^3 km $$ $$r_{Callisto}=r_{Io} (\frac{T_{ Callisto }}{T_{Io}})^{2/3}$$ $$r_{ Callisto }=(422\times10^3 km) (\frac{16.7d}{1.77d})^{2/3}=1880\times10^3 km $$ These numbers agree very well with the tabulated values.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.