Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 30 - Nuclear Physics and Radioactivity - Search and Learn - Page 884: 7

Answer

See the detailed answer below.

Work Step by Step

a) We know that the decay constant is given by $$\lambda=\dfrac{\ln 2}{T_{\frac{1}{2}}}$$ Plugging the known (for $\rm ^{14}_6C$); $$\lambda=\dfrac{\ln 2}{5730\times 365.25\times 24\times 60^2 }$$ $$\lambda=\color{red}{\bf 3.833\times10^{-12}}\;\rm s^{-1}$$ ________________________________________________ b) We need to find the number of $\rm ^{14}_6C$ atoms per gram of $\rm ^{12}_6C$ in a living organism and we know, in a living organism, that there is about $1.3\times 10 ^{-12}$ $\rm ^{14}_6C$ per carbon atom. So that $$N_{^{14}_6C}=\dfrac{N_A}{M} (1.3\times 10 ^{-12} )$$ where $N_A$ is Avogadro's number and $M$ is the molar mass of carbon. Plugging the known; $$N_{^{14}_6C}=\dfrac{6.02\times 10^{23}}{12.0107 } (1.3\times 10 ^{-12} ) =6.52\times 10^{10}$$ Therefore, we have $\color{red}{\bf 6.52\times 10^{10}}$ atom of $\rm ^{14}_6C$ per frame of $\rm ^{12}_6C$ in a living organism. ________________________________________________ c) We know that $$R=N\lambda $$ Plugging from the two final results above; $$R=(3.833\times10^{-12})(6.52\times 10^{10})$$ $$R=\color{red}{\bf 0.2499}\;\rm \dfrac{decay\cdot s^{-1}}{g\;of\;^{12}_6C}$$ ________________________________________________ d) We know that $$R=R_0e^{-\lambda t}$$ where $R_0$ is the final result we found in part c above. Solving for $t$, to find how long ago he lived. $$e^{-\lambda t}=\dfrac{R}{R_0}$$ Hence, $$ -\lambda t =\ln\left[\dfrac{R}{R_0}\right]$$ $$ t =\dfrac{\ln\left[\dfrac{R}{R_0}\right]}{-\lambda}$$ Plugging the known; $$ t =\dfrac{\ln\left[\dfrac{0.121}{0.2499}\right]}{- 3.833\times10^{-12} }=1.892\times 10^{11}\;\rm s$$ $$ t =1.892\times 10^{11}\;\rm s\times \dfrac{1\;\rm year}{365.25\times 24\times 60^2\;s}$$ $$t=\rm 5995\;year\approx \color{red}{\bf6000}\;year$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.