Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 28 - Quantum Mechanics of Atoms - General Problems - Page 827: 45

Answer

$n\geq7$, $\mathcal{l}=6$, and $ m_{\mathcal{l}}=2$.

Work Step by Step

Use equation 28–3 to find $\mathcal{l}$. $$L=\sqrt{\mathcal{l}(\mathcal{l}+1)}\hbar$$ $$\mathcal{l}(\mathcal{l}+1)=\frac{L^2}{\hbar^2}=\frac{(6.84\times10^{-34}J \cdot s)^2}{(1.055\times10^{-34}J \cdot s)^2}=42$$ Since $\mathcal{l}$ is a positive integer, we see that $\mathcal{l}=6$. The possible values of $\mathcal{l}$ are from 0 to (n-1), so $n\geq7$. Use the equation right after 28-3 to find $m_{\mathcal{l}}$. $$L_z= m_{\mathcal{l}}\hbar$$ $$ m_{\mathcal{l}}=\frac{L_z}{\hbar}=\frac{2.11\times10^{-34}J \cdot s}{1.055\times10^{-34}J \cdot s}=2$$ In summary, $n\geq7$, $\mathcal{l}=6$, and $ m_{\mathcal{l}}=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.