Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 22 - Electromagnetic Waves - Search and Learn - Page 643: 3

Answer

a) $1.84\times10^8\;\rm ly$ b) It is about 1800 times the size of the Milkey Way galaxy.

Work Step by Step

a) Since the intensity is inversely proportional to the distance, $$\dfrac{I_{Star}}{I_{Sun}}=\dfrac{r^2_{\rm sun \;to\;Earth}}{r^2_{\rm star\;to\;Earth}}$$ Solving for $r_{\rm star\;to\;Earth}$; $$r_{\rm star\;to\;Earth}^2 =\dfrac{I_{Sun}r^2_{\rm sun \;to\;Earth}}{I_{Star}}$$ Taking the square root for both sides; $$r_{\rm star\;to\;Earth} =r_{\rm sun \;to\;Earth}\sqrt{\dfrac{I_{Sun}}{I_{Star}}}$$ Plugging the known; $$r_{\rm star\;to\;Earth} =1.496\times10^{11}\cdot \sqrt{\dfrac{1350}{10^{-23}}}=\bf1.739\times10^{24}\;\rm m$$ Now we need to convert this distance to lightyear. $$r_{\rm star\;to\;Earth} = 1.739\times10^{24}\;\rm m\cdot \dfrac{1\;ly}{3\times10^8\times 365\times24\times60^2\;m}$$ $$r_{\rm star\;to\;Earth} =\color{red}{\bf 1.84\times10^8}\;\rm ly$$ ----- b) To compare these two distances, $$\dfrac{r_{\rm star\;to\;Earth}}{S_{\rm MW\;galaxy}}=\dfrac{1.84\times10^8}{100\;000}=1838$$ $S$ for size. Thus, $$r_{\rm star\;to\;Earth}=\color{red}{\bf1838}\;S_{\rm MW\;galaxy}$$ It is about 1800 times the size of the Milkey Way galaxy.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.