Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 13 - Temperature and Kinetic Theory - Problems - Page 388: 68

Answer

$t=0.987s$ $8.1\times10^{-8}$

Work Step by Step

$t=\frac{\bar{C}}{\Delta C}\frac{(\Delta x)^2}{D}$ $\Delta C=\frac{C_1-C_2}{2}=\frac{1.00\frac{mol}{m^3}-0.50\frac{mol}{m^3}}{2}=0.25\frac{mol}{m^3}$ $t=\frac{1.5\frac{mol}{m^3}}{2\times0.50\frac{mol}{m^3}}\frac{(25\times10^{-6}m)^2}{95\times10^{-11}\frac{m^2}{s}}=0.987s$ $v_{rms}=\sqrt{\frac{3kT}{m}}=\sqrt{\frac{3(1.38\times10^{-23}\frac{J}{K})(20^oC)}{(75)(1.66\times10^{-27})}}=312.14\frac{m}{s}$ $\frac{v_D}{v_{rms}}=\frac{\frac{25\times10^{-6}m}{0.987s}}{312.14\frac{m}{s}}=8.1\times10^{-8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.