Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 10 - Fluids - Problems - Page 288: 56

Answer

a) See solution b) $v_1=0.165\frac{m}{s}$

Work Step by Step

a) $P_2+\frac{1}{2}\rho v_2^2=P_1+\frac{1}{2}\rho v_1^2$ $(v_1^2-v_2^2)=\frac{2(P_2-P_1)}{\rho}$ $v_1^2-A_1^2\frac{v_1^2}{A_2^2}=v_1^2(1-\frac{A_1^2}{A_2^2})=v_1^2(\frac{A_2^2-A_1^2}{A_2^2})$ $v_1^2=\frac{2(P_2-P_1)A_2^2}{\rho (A_2^2-A_1^2)}$ $v_1=A_2\sqrt{\frac{2(P_1-P_2)}{\rho(A_1^2-A_2^2)}}$ b) $r_1=0.035m$ $r_2=0.01m$ $A_1=3.85\times10^{-3}m^2$ $A_2=3.14\times10^{-4}m^2$ $P_1-P_2=(18mmHg)\Bigg(\frac{113\frac{N}{m^2}}{mmHg}\Bigg)=2034\frac{N}{m^2}$ $A_1^2-A_2^2=1.482\times10^{-5}m^2-9.860\times10^{-8}m^2=1.472\times10^{-5}m^2$ $v_1=A_2\sqrt{\frac{2(P_1-P_2)}{\rho(A_1^2-A_2^2)}}=0.165\frac{m}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.