Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)

Published by Pearson
ISBN 10: 0133942651
ISBN 13: 978-0-13394-265-1

Chapter 29 - The Magnetic Field - Exercises and Problems - Page 833: 58

Answer

$B = 1.5\cdot10^{-3}$ T $\theta = 30^{\circ}$

Work Step by Step

Recall that the magnetic force on a moving particle is $\vec{F}_B = q\vec{v} \times \vec{B} = q\vec{v}\vec{B}$ Because both protons are going in two different directions, we can calculate the magnitude of $\vec{B}$ such that $|\vec{B}| = \sqrt{\displaystyle (\frac{\vec{F}_{B,1}}{q\vec{v}_1})^2+ (\frac{\vec{F}_{B,2}}{q\vec{v}_2})^2}$ $B = \sqrt{\displaystyle (\frac{\vec{F}_1 \hat k}{q\vec{v}_1\hat i})^2 + (\frac{\vec{F}_2\hat k}{q\vec{v}_2\hat j})^2}$ When the unit vectors are squared, they will cancel out (the dot product of the same unit vector is 1) $B = \sqrt{\displaystyle (\frac{1.20 \cdot 10^{-16} }{(1.6\cdot10^{-19})(10^6)})^2 + (\frac{-4.16\cdot 10^{-16}}{(1.6\cdot10^{-19})(2.00\cdot10^6)})^2}$ $B = 1.5\cdot10^{-3}$ T The angle clockwise to the +$x$-axis is given as $\displaystyle \tan(\theta_{cw}) = \frac{B_y}{B_x}$ $\displaystyle \theta_{cw} = \tan^{-1}(\frac{B_y}{B_x}) = \tan^{-1}(\frac{\frac{\vec{F}_1}{q\vec{v}_1}}{\frac{\vec{F}_2}{q\vec{v}_2}}) = \tan^{-1}(\frac{\frac{\vec{F}_1}{\vec{v}_1}}{\frac{\vec{F}_2}{\vec{v}_2}}) = \tan^{-1}(\frac{\vec{F}_1\vec{v}_2}{\vec{v}_1\vec{F}_2})$ $\displaystyle \theta_{cw} = \tan^{-1}(\frac{(1.20\cdot10^{-16})(2.00\cdot10^6)}{(10^6)(-4.16\cdot10^{-16})}) \approx -30^{\circ}$ This makes the angle counterclockwise to the +$x$-axis $\theta_{ccw} \approx 30^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.