Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 41 - Atomic Physics - Exercises and Problems - Page 1247: 55

Answer

See the detailed answer below.

Work Step by Step

We are asked to calculate the average value of $ r $ in terms of $ a_B $ (Bohr radius) for the electron in the $1s$ and 2p states of hydrogen. This is based on the radial probability density function, $ P_r(r) $, which is the probability of finding an electron at a distance $ r $ from the nucleus in a hydrogen atom. The average value of $ r $ is given by: $$ r_{\text{avg}} = \int_0^\infty r P_r(r) \, dr\tag 1 $$ where $P_r(r) = 4\pi r^2 |R_{nl}(r)|^2$, where the radial wave function for the $1s$ state and it is given by $ R_{1s}(r) = \dfrac{1}{\sqrt{\pi a_B^3}} e^{-r/a_B}$ Thus, $$P_r(r) = 4\pi r^2\left[\dfrac{1}{\sqrt{\pi a_B^3}} e^{-r/a_B}\right]^2=4\pi r^2 \dfrac{1}{ \pi a_B^3} e^{-2r/a_B} $$ $$P_r(r) = \dfrac{4}{ a_B^3} r^2e^{-2r/a_B}$$ Plug into (1); $$ r_{\text{avg}} = \int_0^\infty\dfrac{4}{ a_B^3} r^3e^{-2r/a_B}\, dr $$ Factor out the constants: $$ r_{\text{avg}} =\dfrac{4}{ a_B^3} \int_0^\infty r^3e^{-2r/a_B}\, dr \tag 2 $$ - The integral of the form $ \int_0^\infty x^n e^{-\alpha x} \, dr $ is a standard integral from mathematical tables. $$\int_0^{\infty} x^n e^{-\alpha x} \, dx = \frac{n}{\alpha^{n+1}}$$ So, In this case: $$ \int_0^\infty r^3 e^{-2r/a_B} \, dr = \frac{3!}{(2/a_B)^4}= \frac{6a_B^4}{16} $$ Plug into (2); $$ r_{\text{avg}} =\dfrac{4}{ a_B^3} \cdot \frac{6a_B^4}{16} $$ $$ r_{\text{avg}} =\color{red}{\bf 1.5} \,a_B $$ For the $2p$ state, the radial wave function is different, and hence the probability density function $ P_r(r) $ is also different. where $P_r(r) = 4\pi r^2 |R_{nl}(r)|^2$, where the radial wave function for the $2p$ state and it is given by $ R_{2p}(r) = \frac{1}{\sqrt{24\pi a_B^3}} \left(\frac{r}{2a_B}\right) e^{-r/2a_B}$ Thus, $$P_r(r) = 4\pi r^2\left[ \frac{1}{\sqrt{24\pi a_B^3}} \left(\frac{r}{2a_B}\right) e^{-r/2a_B}\right]^2$$ $$ = 4\pi r^2\left[ \frac{1}{{24\pi a_B^3}} \left(\frac{r^2}{4a_B^2}\right) e^{-r/a_B}\right]$$ $$ P_r(r)=\frac{ 1}{{24a_B^5}} r^4e^{-r/a_B} $$ Plug into (1); $$ r_{\text{avg}} = \int_0^\infty \frac{ 1}{{24a_B^5}} r^5e^{-r/a_B} \, dr $$ $$ r_{\text{avg}} = \frac{ 1}{{24a_B^5}} \int_0^\infty r^5e^{-r/a_B} \, dr $$ Using the same integral formula as above, $$ r_{\text{avg}} = \frac{ 1}{{24a_B^5}} \cdot \frac{5!}{(1/a_B)^6} $$ $$ r_{\text{avg}} = \frac{ 1}{{24a_B^5}} \cdot 120 a_B^6 $$ $$ r_{\text{avg}} =\color{red}{\bf 5.0}\, a_B $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.