Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 33 - Electromagnetic Induction - Exercises and Problems - Page 1001: 68

Answer

a) ${\bf 6.28\times 10^{-7}}\;\rm s$ b) ${\bf 0.50}\;\rm mA$

Work Step by Step

$$\color{blue}{\bf [a]}$$ Recalling that the dynamics of the charge on the capacitor in $LC$-circuits is given by $$Q=Q_0\cos(\omega t)$$ So the capacitor is fully discharged when $\cos(\omega t)=0$, Hence, $$\cos(\omega t)=0$$ Hence, $$\omega t=\dfrac{\pi}{2}$$ where $\omega=\sqrt{1/LC}$ $$\dfrac{t}{\sqrt{LC}}=\dfrac{\pi}{2}$$ So that $$t=\dfrac{\pi}{2}\sqrt{LC}$$ Plug the known; $$t=\dfrac{\pi}{2}\sqrt{(20\times 10^{-3})(8\times 10^{-12})}\tag 1$$ $$t=\color{red}{\bf 6.28\times 10^{-7}}\;\rm s$$ $$\color{blue}{\bf [b]}$$ We know that the current through the inductor as the capacitor charge oscillates is given by $$I=-\dfrac{-dQ}{dt}=-\dfrac{d}{dt}Q_0\cos(\omega t)$$ $$I= Q_0\omega \sin(\omega t)$$ where $Q_0 =\Delta V_C C$, and $\omega=\sqrt{1/LC}$, $$I= \dfrac{ \Delta V_C C}{\sqrt{LC}}\sin\left(\dfrac{t}{\sqrt{LC}}\right)$$ where we need the current when the capacitor is fully discharged, so we need to plug $t$ from (1); $$I= \dfrac{ \Delta V_C C}{\sqrt{LC}}\sin\left(\dfrac{\pi\sqrt{LC}}{2\sqrt{LC}}\right)$$ $$I= \dfrac{ \Delta V_C C}{\sqrt{LC}}\sin\left(\dfrac{\pi }{2 }\right)$$ $$I= \dfrac{ \Delta V_C C}{\sqrt{LC}}$$ Plug the known; $$I= \dfrac{(25)(8\times 10^{-12})}{\sqrt{(20\times 10^{-3})(8\times 10^{-12})}}$$ $$I= \color{red}{\bf 0.50}\;\rm mA$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.